【題目】教師運動會中,甲,乙兩組教師參加“兩人背夾球”往返跑比賽,即:每組兩名教師用背部夾著球跑完規(guī)定的路程,若途中球掉下時須撿起并回到掉球處繼續(xù)賽跑,用時少者勝.若距起點的距離用y(米)表示,時間用x(秒)表示.下圖表示兩組教師比賽過程中y與x的函數(shù)關(guān)系的圖象.根據(jù)圖象,有以下四個推斷:
①乙組教師獲勝
②乙組教師往返用時相差2秒
③甲組教師去時速度為0.5米/秒
④返回時甲組教師與乙組教師的速度比是2:3
其中合理的是( )
A. ①② B. ①③ C. ②④ D. ①④
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E為正方形ABCD中AD邊上的一個動點,AB=16,以BE為邊畫正方形BEFG,邊EF與邊CD交于點H.
(1)當(dāng)E為邊AD的中點時,求DH的長;
(2)當(dāng)tan∠ABE= 時,連接CF,求CF的長;
(3)連接CE,求△CEF面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,Rt△ABC中,∠ABC=90°,AD平分∠BAC交BC于D.
(1)用尺規(guī)畫圓O,使圓O過A、D兩點,且圓心O在邊AC上.(保留作圖痕跡,不寫作法)
(2)求證:BC與圓O相切;
(3)設(shè)圓O交AB于點E,若AE=2,CD=2BD.求線段BE的長和弧DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2015隨州)甲騎摩托車從A地去B地,乙開汽車從B地去A地,同時出發(fā),勻速行駛,各自到達終點后停止,設(shè)甲、乙兩人間距離為s(單位:千米),甲行駛的時間為t(單位:小時),s與t之間的函數(shù)關(guān)系如圖所示,有下列結(jié)論:
①出發(fā)1小時時,甲、乙在途中相遇;
②出發(fā)1.5小時時,乙比甲多行駛了60千米;
③出發(fā)3小時時,甲、乙同時到達終點;
④甲的速度是乙速度的一半.
其中,正確結(jié)論的個數(shù)是( 。
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個三角形為“好玩三角形”.
(1)請用直尺和圓規(guī)畫一個“好玩三角形”;
(2)如圖在Rt△ABC中,∠C=90°,tanA= ,求證:△ABC是“好玩三角形”;
(3)如圖2,已知菱形ABCD的邊長為a,∠ABC=2β,點P,Q從點A同時出發(fā),以相同速度分別沿折線AB﹣BC和AD﹣DC向終點C運動,記點P經(jīng)過的路程為s.
①當(dāng)β=45°時,若△APQ是“好玩三角形”,試求 的值;
②當(dāng)tanβ的取值在什么范圍內(nèi),點P,Q在運動過程中,有且只有一個△APQ能成為“好玩三角形”.請直接寫出tanβ的取值范圍.
(4)(本小題為選做題)
依據(jù)(3)的條件,提出一個關(guān)于“在點P,Q的運動過程中,tanβ的取值范圍與△APQ是‘好玩三角形’的個數(shù)關(guān)系”的真命題(“好玩三角形”的個數(shù)限定不能為1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教室里的飲水機接通電源就進入自動程序,開機加熱時每分鐘上升10℃,加熱到100℃,停止加熱,水溫開始下降,此時水溫(℃)與開機后用時(min)成反比例關(guān)系.直至水溫降至30℃,飲水機關(guān)機.飲水機關(guān)機后即刻自動開機,重復(fù)上述自動程序.若在水溫為30℃時,接通電源后,水溫y(℃)和時間(min)的關(guān)系如圖,為了在上午第一節(jié)下課時(8:45)能喝到不超過50℃的水,則接通電源的時間可以是當(dāng)天上午的( )
A.7:20
B.7:30
C.7:45
D.7:50
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖鋼架中,焊上等長的13根鋼條來加固鋼架,若AP1=P1P2=P2P3=…=P13P14=P14A,則∠A的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在一條直線道路上分別從相距1500米的A,B 兩點同時出發(fā),相向而行,當(dāng)兩人相遇后,甲繼續(xù)向點B前進(甲到達點B時停止運動),乙也立即向B點返回.在整個運動過程中,甲、乙均保持勻速運動.甲、乙兩人之間的距離y(米)與乙運動的時間x(秒) 之間的關(guān)系如圖所示.則甲到B點時,乙距B點的距離是________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,點D是BC邊上一動點,點E,F(xiàn)分別在AB,AC邊上,連接AD,DE,DF,且∠ADE=∠ADF=60°.
小明通過觀察、實驗,提出猜想:在點D運動的過程中,始終有AE=AF,小明把這個猜想與同學(xué)們進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:利用AD是∠EDF的角平分線,構(gòu)造△ADF的全等三角形,然后通過等腰三角形的相關(guān)知識獲證.
想法2:利用AD是∠EDF的角平分線,構(gòu)造角平分線的性質(zhì)定理的基本圖形,然后通過全等三角形的相關(guān)知識獲證.
想法3:將△ACD繞點A順時針旋轉(zhuǎn)至△ABG,使得AC和AB重合,然后通過全等三角形的相關(guān)知識獲證.
請你參考上面的想法,幫助小明證明AE=AF.(一種方法即可)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com