【題目】(1)在數(shù)軸上標(biāo)出數(shù)﹣4.5,﹣2,1,3.5所對(duì)應(yīng)的點(diǎn)A,B,C,D;

(2)C,D兩點(diǎn)間距離=_____;B,C兩點(diǎn)間距離=_____;

(3)數(shù)軸上有兩點(diǎn)M,N,點(diǎn)M對(duì)應(yīng)的數(shù)為a,點(diǎn)N對(duì)應(yīng)的數(shù)為b,那么M,N兩點(diǎn)之間的距離=_____;

(4)若動(dòng)點(diǎn)P,Q分別從點(diǎn)B,C同時(shí)出發(fā),沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng);已知點(diǎn)P的速度是每秒1個(gè)單位長(zhǎng)度,點(diǎn)Q的速度是每秒2個(gè)單位長(zhǎng)度,問①t為何值時(shí)P,Q兩點(diǎn)重合?②t為何值時(shí)P,Q兩點(diǎn)之間的距離為1?

【答案】(1)詳見解析;(2)2.53(3)|a﹣b|(4)詳見解析

【解析】

(1)在數(shù)軸上找出-4.5、-2、1、3.5即可.

(2)(3)兩點(diǎn)之間的距離等于該點(diǎn)所表示的數(shù)的差的絕對(duì)值.

(4)①根據(jù)題意,由Q的路程-P的路程=3,列出方程求解即可;

②根據(jù)題意,由Q的路程-P的路程=3-1Q的路程-P的路程=3+1,列出方程求解即可.

(1)如圖所示:

(2)CD=3.5﹣1=2.5,

BC=1﹣(﹣2)=3;

(3)MN=|a﹣b|;

(4)①依題意有2t﹣t=3,

解得t=3.

t3秒時(shí)P,Q兩點(diǎn)重合;

②依題意有

2t﹣t=3﹣1,

解得t=2;

2t﹣t=3+1,

解得t=4.

t2秒或3秒時(shí)P,Q兩點(diǎn)之間的距離為1.

故答案為:2.5,3;|a﹣b|.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1、3、6、10 …這樣的數(shù)稱為三角形數(shù),而把1、4、9、16 …這樣的數(shù)稱為正方形數(shù).從下圖中可以發(fā)現(xiàn),任何一個(gè)大于1正方形數(shù)都可以看作兩個(gè)相鄰三角形數(shù)之和.用等式表示第100個(gè)正方形點(diǎn)陣中的規(guī)律_________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將下列各數(shù)填入相應(yīng)的括號(hào)里:

,5,,,0,8,-2,-0.7……

正數(shù)集合{________________________________________…};

負(fù)數(shù)集合{________________________________________…};

有理數(shù)集合{________________________________________…};

無理數(shù)集合{________________________________________…}.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤被平均分成4個(gè)扇形,分別標(biāo)有1、2、3、4四個(gè)數(shù)字,小王和小李各轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤為一次游戲.當(dāng)每次轉(zhuǎn)盤停止后,指針?biāo)干刃蝺?nèi)的數(shù)為各自所得的數(shù),一次游戲結(jié)束得到一組數(shù)(若指針指在分界線時(shí)重轉(zhuǎn)).
(1)請(qǐng)你用樹狀圖或列表的方法表示出每次游戲可能出現(xiàn)的所有結(jié)果;
(2)求每次游戲結(jié)束得到的一組數(shù)恰好是方程x2﹣4x+3=0的解的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a、b、c在數(shù)軸上的位置如圖所示,則:

(1)“<、>、=”填空:a____0,b____0,c_____0;

(2)“<、>、=”填空:﹣a____0,a﹣b____0,c﹣a____0;

(3)化簡(jiǎn):|﹣a|﹣|a﹣b|+|c﹣a|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(﹣2,0),點(diǎn)B(4,0),點(diǎn)D(2,4),與y軸交于點(diǎn)C,作直線BC,連接AC、CD.
(1)求拋物線的函數(shù)表達(dá)式;
(2)E是拋物線上的點(diǎn),求滿足∠ECD=∠ACO的點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論中正確的是(
A.a>0
B.3是方程ax2+bx+c=0的一個(gè)根
C.a+b+c=0
D.當(dāng)x<1時(shí),y隨x的增大而減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°BC的垂直平分線DEBCD,交ABE,FDE上,并且AFCE

1)求證:四邊形ACEF是平行四邊形;

2)當(dāng)∠B的大小滿足什么條件時(shí),四邊形ACEF是菱形?請(qǐng)回答并證明你的結(jié)論;

3)四邊形ACEF有可能是正方形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.

(1)求證:△AEC≌△BED;

(2)若∠1=42°,求∠BDE的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案