【題目】如圖,在直角坐標(biāo)系中,反比例函數(shù)圖像與直線相交于橫坐標(biāo)為3的點(diǎn)A.
(1)求反比例函數(shù)的解析式;
(2)如果點(diǎn)B在直線上,點(diǎn)C在反比例函數(shù)圖像上,BC//軸,BC= 4,且BC在點(diǎn)A上方,求點(diǎn)B的坐標(biāo).
【答案】(1); (2)點(diǎn)B的坐標(biāo)為(5,3).
【解析】
(1)設(shè)反比例函數(shù)的解析式為y=,把點(diǎn)A的橫坐標(biāo)代入直線解析式y(tǒng)=x-2,可求得點(diǎn)A的縱坐標(biāo),把點(diǎn)A的橫縱坐標(biāo)代入y=,即可求得所求的反比例函數(shù)解析式;
(2)設(shè)點(diǎn)C(,m),則點(diǎn)B(m+2,m),根據(jù)BC=4列出方程m+2-=4,解方程即可.
解:(1)設(shè)反比例函數(shù)的解析式為y=.
∵橫坐標(biāo)為3的點(diǎn)A在直線y=x-2上,
∴y=3-2=1,
∴點(diǎn)A的坐標(biāo)為(3,1),
∴1= ,∴k=3,
∴反比例函數(shù)的解析式為y=;
(2)設(shè)點(diǎn)C(,m),則點(diǎn)B(m+2,m),
∵BC=4,
∴m+2-=4,
∴m2+2m-3=4m,
∴m2-2m-3=0,
解得m1=3,m2=-1.
m1=3,m2=-1都是方程的解,但m=-1不符合題意,
∴點(diǎn)B的坐標(biāo)為(5,3).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某村莊計劃建造A,B兩種型號的沼氣池共20個,以解決該村所有農(nóng)戶的燃料問題.兩種型號沼氣池的占地面積和可供使用農(nóng)戶數(shù)見下表:
型號 | 占地面積 (單位:m2/個) | 可供使用農(nóng)戶數(shù) (單位:戶/個) |
A | 15 | 18 |
B | 20 | 30 |
已知可供建造沼氣池的占地面積不超過365m2,該村農(nóng)戶共有492戶.
(1)如何合理分配建造A,B型號“沼氣池”的個數(shù)才能滿足條件?滿足條件的方案有幾種?通過計算分別寫出各種方案.
(2)請寫出建造A、B兩種型號的“沼氣池”的總費(fèi)用y和建造A型“沼氣池”個數(shù)x之間的函數(shù)關(guān)系式;
(3)若A型號“沼氣池”每個造價2萬元,B型號“沼氣池”每個造價3萬元,試說明在(1)中的各種建造方案中,哪種建造方案最省錢,最少的費(fèi)用需要多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某公司計劃用32m長的材料沿墻建造的長方形倉庫,倉庫的一邊靠墻,已知墻長16m,設(shè)長方形的寬AB為xm.
(1)用x的代數(shù)式表示長方形的長BC;
(2)能否建造成面積為120㎡的長方形倉庫?若能,求出長方形倉庫的長和寬;若不能,請說明理由;
(3)能否建造成面積為160㎡的長方形倉庫?若能,求出長方形倉庫的長和寬;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,圖2,分別是吊車在吊一物品時的實(shí)物圖與示意圖,已知吊車底盤CD的高度為1.8米,支架BC的長為4米,且與地面成30°角,吊繩AB與支架BC的夾角為80°,吊臂AC與地面成70°角,求吊車的吊臂頂端A點(diǎn)距地面的高度是多少米?(精確到0.1米,參考數(shù)據(jù):sin10°=cos80°=0.17,cos10°=sin80°=0.98,sin20°=cos70°=0.34,tan70°=2.75,sin70°=0.94)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】貨車在公路A處加滿油后,以每小時60千米的速度勻速行駛,前往與A處相距360千米的B處.下表記錄的是貨車一次加滿油后油箱剩余油量y(升)與行駛時間x(時)之間的關(guān)系:
(1)如果y關(guān)于x的函數(shù)是一次函數(shù),求這個函數(shù)解析式(不要求寫出自變量的取值范圍)
(2)在(1)的條件下,如果貨車的行駛速度和每小時的耗油量都不變,貨車行駛4小時后到達(dá)C處,C的前方12千米的D處有一加油站,那么在D處至少加多少升油,才能使貨車到達(dá)B處卸貨后能順利返回會D處加油?(根據(jù)駕駛經(jīng)驗(yàn),為保險起見,油箱內(nèi)剩余油量應(yīng)隨時不少于10升)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是△ABC的內(nèi)心,BO的延長線和△ABC的外接圓相交于D,連結(jié)DC、DA、OA、OC,四邊形OADC為平行四邊形.
(1)求證:△BOC≌△CDA.
(2)若AB=2,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條不完整的數(shù)軸上從左到右有點(diǎn)A,B,D,C,其中AB=2,BD=3,DC=1,如圖所示,設(shè)點(diǎn)A,B,D,C所對應(yīng)數(shù)的和是p.
(1)①若以B為原點(diǎn).寫出點(diǎn)A,D,C所對應(yīng)的數(shù),并計算p的值;
②若以D為原點(diǎn),p又是多少?
(2)若原點(diǎn)O在圖中數(shù)軸上點(diǎn)C的右邊,且CO=x,p=﹣71,求x.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是BC的中點(diǎn),E是AD的中點(diǎn),過A點(diǎn)作BC的平行線交BE的延長線于F,連接CF.
(1)線段AF與CD相等嗎?為什么?
(2)如果AB=AC,試猜測四邊形ADCF是怎樣的特殊四邊形,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com