【題目】已知:四邊形ABCD中,∠ABC=∠ADC=90°,AB=BC,連接BD.
(1)畫出示意圖;
(2)請(qǐng)問(wèn):DB平分∠ADC嗎?請(qǐng)給出結(jié)論,并說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2)DB平分∠ADC,理由見(jiàn)解析.
【解析】
(1)根據(jù)題意畫出圖形即可;
(2)作BM⊥AD于M,BN⊥DC交DC的延長(zhǎng)線于N,根據(jù)AAS證明△ABM≌△CBN,得出BM=BN,再根據(jù)HL證明△DBM≌△DBN即可解決問(wèn)題.
解:(1)根據(jù)題意畫出圖形如下:
(2)DB平分∠ADC,理由:
作BM⊥AD于M,BN⊥DC交DC的延長(zhǎng)線于N,
∵∠ABC=∠ADC=90°,
∴∠MBN=90°,
∴∠ABM=∠CBN,
∵BM⊥AD于M,BN⊥DC交DC的延長(zhǎng)線于N,
∴∠AMB=∠CNB=90°,
又∵AB=BC,
∴△ABM≌△CBN,
∴BM=BN,
∵BD=BD,
∴Rt△DBM≌Rt△DBN,
∴∠BDM=∠BDN,即DB平分∠ADC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是一個(gè)長(zhǎng)為2m、寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀均分成四塊小長(zhǎng)方形,然后按圖2的形狀拼成一個(gè)正方形.
請(qǐng)用兩種不同的方法求圖2中陰影部分的面積直接用含m,n的代數(shù)式表示
方法1:______
方法2:______
根據(jù)中結(jié)論,請(qǐng)你寫出下列三個(gè)代數(shù)式之間的一個(gè)等量關(guān)系: ______;代數(shù)式:,,mn
根據(jù)題中的等量關(guān)系,解決如下問(wèn)題:已知,,求和的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某自行車經(jīng)銷商計(jì)劃投入7.1萬(wàn)元購(gòu)進(jìn)100輛A型和30輛B型自行車,其中B型車單價(jià)是A型車單價(jià)的6倍少60元.
(1)求A、B兩種型號(hào)的自行車單價(jià)分別是多少元?
(2)后來(lái)由于該經(jīng)銷商資金緊張,投入購(gòu)車的資金不超過(guò)5.86萬(wàn)元,但購(gòu)進(jìn)這批自行年的總數(shù)不變,那么至多能購(gòu)進(jìn)B型車多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC,BD平分∠CBA交AC于點(diǎn)D,DE⊥AB于點(diǎn)E,且△DEA的周長(zhǎng)為2019cm,則AB=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠B=∠C=90°,M是BC的中點(diǎn),DM平分∠ADC,∠CMD=35°,∠MAB的度數(shù)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB∥DC,AD∥BC,BE=DF,則圖中全等的三角形有( )
A. 3對(duì) B. 4對(duì) C. 5對(duì) D. 6對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子里有完全相同的三個(gè)小球,球上分別標(biāo)上數(shù)字-1、1、2.隨機(jī)摸出一個(gè)小球(不放回),其數(shù)字記為p,再隨機(jī)摸出另一個(gè)小球,其數(shù)字記為q,則p,q使關(guān)于x的方程x2+px+q=0有實(shí)數(shù)根的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:
(1)寫出A、B、C三點(diǎn)的坐標(biāo);
(2)若△ABC各頂點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)都乘以﹣1,請(qǐng)你在同一坐標(biāo)系中描出對(duì)應(yīng)的點(diǎn)A′、B′、C′,并依次連接這三個(gè)點(diǎn),所得的△A′B′C′與原△ABC有怎樣的位置關(guān)系;
(3)在②的基礎(chǔ)上,縱坐標(biāo)都不變,橫坐標(biāo)都乘以﹣1,在同一坐標(biāo)系中描出對(duì)應(yīng)的點(diǎn)A″、B″、C″,并依次連接這三個(gè)點(diǎn),所得的△A″B″C″與原△ABC有怎樣的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2臺(tái)大收割機(jī)和5臺(tái)小收割機(jī)同時(shí)工作2 h共收割小麥3.6hm2,3臺(tái)大收割機(jī)和2臺(tái)小收割機(jī)同時(shí)工作5 h共收割小麥8 hm2.1臺(tái)大收割機(jī)和1臺(tái)小收割機(jī)每小時(shí)各收割小麥多少公頃?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com