【題目】如圖,在菱形中,,,為正三角形,點、分別在菱形的邊、上滑動,且、不與、、重合.
(1)證明不論、在、上如何滑動,總有;
(2)當點、在、上滑動時,分別探討四邊形和的面積是否發(fā)生變化?如果不變,求出這個定值;如果變化,求出最大(或最小)值.
【答案】(1)見解析;(2)四邊形AECF的面積不變,△CEF的面積發(fā)生變化.理由見解析.
【解析】
(1)先求證AB=AC,進而求證△ABC、△ACD為等邊三角形,得∠4=60°,AC=AB進而求證△ABE≌△ACF,即可求得BE=CF;
(2)根據△ABE≌△ACF可得S△ABE=S△ACF,故根據S四邊形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解題.當正三角形AEF的邊AE與BC垂直時,邊AE最短.△AEF的面積會隨著AE的變化而變化,且當AE最短時,正三角形AEF的面積會最小,又根據S△CEF=S四邊形AECF-S△AEF,則△CEF的面積就會最大.
證明:連接AC,如下圖所示,
∵四邊形ABCD為菱形,∠BAD=120°,
∠1+∠EAC=60°,∠3+∠EAC=60°,
∴∠1=∠3,
∵∠BAD=120°,
∴∠ABC=60°,
∴△ABC和△ACD為等邊三角形,
∴∠4=60°,AC=AB,
∴在△ABE和△ACF中,
,
∴△ABE≌△ACF(ASA).
∴BE=CF;
(2)四邊形AECF的面積不變,△CEF的面積發(fā)生變化
理由:由(1)得△ABE≌△ACF,
則S△ABE=S△ACF,
故S四邊形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,
作AH⊥BC于H點,則BH=2,
S四邊形AECF=S△ABC=BCAH==.
由“垂線段最短”可知:當正三角形AEF的邊AE與BC垂直時,邊AE最短.
故△AEF的面積會隨著AE的變化而變化,且當AE最短時,正三角形AEF的面積會最小,
又S△CEF=S四邊形AECFS△AEF,則此時△CEF的面積就會最大.
∴S△CEF=S四邊形AECFS△AEF=×2×=.
答:最大值是.
科目:初中數學 來源: 題型:
【題目】已知:A(0,1),B(2,0),C(4,3)
(1)在直角坐標系中描出各點,畫出△ABC.
(2)求△ABC的面積;
(3)設點P在坐標軸上,且△ABP與△ABC的面積相等,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】畫圖并填空:
如圖,△ABC的頂點都在方格紙的格點上,將△ABC向下平移2倍,再向右平移3格.
(1)請在圖中畫出平移后的△A′B′C′;
(2)在圖中畫出△的A′B′C′的高C′D′(標出點D′的位置);
(3)如果每個小正方形邊長為1,則△A′B′C′的面積= .(答案直接填在題中橫線上)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖1,線段AB、CD相交于點O,連接AD、CB,我們把形如圖1的圖形稱之為“8字形”.如圖2,在圖1的條件下,∠DAB和∠BCD的平分線AP和CP相交于點P,并且與CD、AB分別相交于M、N.試解答下列問題:
(1)在圖1中,請直接寫出∠A、∠B、∠C、∠D之間的數量關系: ;
(2)仔細觀察,在圖2中“8字形”的個數: 個;
(3)圖2中,當∠D=50度,∠B=40度時,求∠P的度數.
(4)圖2中∠D和∠B為任意角時,其他條件不變,試問∠P與∠D、∠B之間存在著怎樣的數量關系.(直接寫出結果,不必證明).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線l1∥l2,直線l3和直線l1,l2交于點C和D,直線l3上有一點P。
(1)如圖1,若P點在C,D之間運動時,問∠PAC,∠APB,∠PBD之間的關系是否發(fā)生變化,并說明理由;
(2)若點P在C,D兩點的外側運動時(P點與點C,D不重合,如圖2和3),試寫出∠PAC,∠APB,∠PBD之間的關系,并說明理由。(圖3只寫結論,不寫理由)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一架長25米的梯子,斜靠在豎直的墻上,這時梯子底端離墻7米.
(1)此時梯子頂端離地面多少米?
(2)若梯子頂端下滑4米,那么梯子底端將向左滑動多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將紙片 ABCD 沿 PR 翻折得到三角形 PC′R,恰好 C′P∥AB,C′R∥AD.若∠B=120°,∠D=50°,則 ∠C=_____°.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com