【題目】如圖,已知第一象限內(nèi)的點A在反比例函數(shù)y=的圖象上,第二象限內(nèi)的點B在反比例函數(shù)y=的圖象上,且OA⊥OB,cosA=,則k的值為( )
A. -3 B. -6 C. -4 D. -
【答案】C
【解析】過A作AE⊥x軸,過B作BF⊥x軸,由OA與OB垂直,再利用鄰補(bǔ)角定義得到一對角互余,再由直角三角形BOF中的兩銳角互余,利用同角的余角相等得到一對角相等,又一對直角相等,利用兩對對應(yīng)角相等的三角形相似得到三角形BOF與三角形OEA相似,在直角三角形AOB中,由銳角三角函數(shù)定義,根據(jù)cos∠BAO的值,設(shè)出AB與OA,利用勾股定理表示出OB,求出OB與OA的比值,即為相似比,根據(jù)面積之比等于相似比的平方,求出兩三角形面積之比,由A在反比例函數(shù)y=上,利用反比例函數(shù)比例系數(shù)的幾何意義求出三角形AOE的面積,進(jìn)而確定出BOF的面積,再利用k的集合意義即可求出k的值.
過A作AE⊥x軸,過B作BF⊥x軸.
∵OA⊥OB,∴∠AOB=90°,∴∠BOF+∠EOA=90°.
∵∠BOF+∠FBO=90°,∴∠EOA=∠FBO.
∵∠BFO=∠OEA=90°,∴△BFO∽△OEA.在Rt△AOB中,cos∠BAO==.
設(shè)AB=,則OA=1,根據(jù)勾股定理得:BO=,∴OB:OA=:1,
∴S△BFO:S△OEA=2:1.
∵A在反比例函數(shù)y=上,∴S△OEA=1,∴S△BFO=2,則k=﹣4.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象與直線y=3x相交于點C,過直線上點A(1,3)作AB⊥x軸于點B,交反比例函數(shù)圖象于點D,且AB=3BD.
(1)求反比例函數(shù)的表達(dá)式;
(2)求點C的坐標(biāo);
(3)在y軸上確定一點M,使點M到C,D兩點距離之和d=MC+MD最小,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊各10人的比賽成績?nèi)缦卤恚?/span>10分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲隊成績的中位數(shù)是 分,乙隊成績的眾數(shù)是 分;
(2)計算乙隊的平均成績和方差;
(3)已知甲隊成績的方差是1.4,則成績較為整齊的是 隊.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋中裝有黃球、黑球和紅球共40個,它們除顏色外都相同,其中紅球有22個,且經(jīng)過試驗發(fā)現(xiàn)摸出一個球為黃球的頻率接近0.125 。
⑴求袋中有多少個黑球;
⑵現(xiàn)從袋中取出若干個黑球,并放入相同數(shù)量的黃球,攪拌均勻后使從袋中摸出一個球是黃球的概率達(dá)到,問至少取出了多少個黑球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點O與坐標(biāo)原點重合,A、C分別在坐標(biāo)軸上,點B的坐標(biāo)為(4,2),直線交AB,BC分別于點M,N,反比例函數(shù)的圖象經(jīng)過點M,N.
(1)求反比例函數(shù)的解析式;
(2)若點P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點E,過點E作BE的垂線交AB于點F,⊙O是△BEF的外接圓.
(1)求證:AC是⊙O的切線;
(2)過點E作EH⊥AB,垂足為H,求證:CD=HF;
(3)若CD=1,EH=3,求BF及AF長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△OAB中,O為坐標(biāo)原點,橫、縱軸的單位長度相同,A、B的坐標(biāo)分別為(8,6),(16,0),點P沿OA邊從點O開始向終點A運動,速度每秒1個單位,點Q沿BO邊從B點開始向終點O運動,速度每秒2個單位,如果P、Q同時出發(fā),用t(秒)表示移動時間,當(dāng)這兩點中有一點到達(dá)自己的終點時,另一點也停止運動。求:
(1)幾秒時PQ∥AB.
(2)設(shè)△OPQ的面積為y,求y與t的函數(shù)關(guān)系式.
(3)△OPQ與△OAB能否相似?若能,求出點P的坐標(biāo),若不能,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一商家按標(biāo)價銷售工藝品時,每件可獲利元,按標(biāo)價的八五新銷售工藝品件與將標(biāo)價降低元銷售這種工藝品件所獲利潤相等.
(1)該工藝品每件的進(jìn)價、標(biāo)價分別是多少?
(2)若每件工藝品按此進(jìn)價進(jìn)貨,標(biāo)價銷售,商家每天可賣出工藝品件,若每件工藝品降價元,則每天可多賣出該工藝品件,間每件降價多少元銷售,每天獲得利潤最大?獲得最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣3,0),B(1,0),C(0,3)三點.
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖1,P為拋物線上在第二象限內(nèi)的一點,若△PAC面積為3,求點P的坐標(biāo);
(3)如圖2,D為拋物線的頂點,在線段AD上是否存在點M,使得以M,A,O為頂點的三角形與△ABC相似?若存在,求點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com