【題目】王華由,,,,,這些算式發(fā)現(xiàn):任意兩個奇數(shù)的平方差都是8的倍數(shù)
(1)請你再寫出兩個(不同于上面算式)具有上述規(guī)律的算式;
(2)請你用含字母的代數(shù)式概括王華發(fā)現(xiàn)的這個規(guī)律(提示:可以使用多個字母);
(3)證明這個規(guī)律的正確性.
【答案】(1),;(2);(3)見解析.
【解析】
(1)根據(jù)已知算式寫出符合題意的答案;
(2)利用平方差公式計算,即可得出答案;
(3)先把代數(shù)式進(jìn)行分解因式,然后對m、n的值進(jìn)行討論分析,即可得到結(jié)論成立.
解:(1)根據(jù)題意,有:,;
∴,;
(2)根據(jù)題意,得:(m,n, a都是整數(shù)且互不相同);
(3) 證明:
=
=;
當(dāng)m、n同是奇數(shù)或偶數(shù)時,(m-n)一定是偶數(shù),
∴ 4(m-n)一定是8的倍數(shù);
當(dāng)m、n是一奇一偶時,(m+n+1)一定是偶數(shù),
∴ 4(m+n+1)一定是8的倍數(shù);
綜上所述,任意兩個奇數(shù)的平方差都是8的倍數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B>90°,CD為∠ACB的角平分線,在AC邊上取點(diǎn)E,使DE=DB,且∠AED>90°.若∠A=α,∠ACB=β,則( 。
A.∠AED=180°﹣α﹣βB.∠AED=180°﹣α﹣β
C.∠AED=90°﹣α+βD.∠AED=90°+α+β
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線和x軸交于兩點(diǎn)A、B,和y軸交于點(diǎn)C,已知A、B兩點(diǎn)的橫坐標(biāo)分別為﹣1,4,△ABC是直角三角形,∠ACB=90°,則此拋物線頂點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,于點(diǎn).
(1)如圖1所示,點(diǎn)分別在線段上,且,當(dāng)時,求線段的長;
(2)如圖2,點(diǎn)在線段的延長線上,點(diǎn)在線段上,(1)中其他條件不變.
①線段的長為 ;
②求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D為AC上一點(diǎn),且CD=CB,以BC為直徑作☉O,交BD于點(diǎn)E,連接CE,過D作DFAB于點(diǎn)F,∠BCD=2∠ABD.
(1)求證:AB是☉O的切線;
(2)若∠A=60°,DF=,求☉O的直徑BC的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,∠ACB=72°,
(1)若BD⊥AC于D,求∠ABD的度數(shù);
(2)若CE平分∠ACB,求證:AE=BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△BAD是由△BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.
(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2AD,點(diǎn)A(0,1),點(diǎn)C、D在反比例函數(shù)(k>0)的圖象上,AB與x軸的正半軸相交于點(diǎn)E,若E為AB的中點(diǎn),則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于的方程有兩個不相等的實(shí)數(shù)根.
求實(shí)數(shù)的取值范圍;
是否存在實(shí)數(shù),使方程的兩個實(shí)數(shù)根之和等于兩實(shí)數(shù)根之積的算術(shù)平方根?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com