分析 (1)計(jì)算出CM及BD的長(zhǎng),進(jìn)而可得出答案;
(2)根據(jù)C、D的運(yùn)動(dòng)速度知BD=2MC,再由已知條件MD=2AC求得MB=2AM,所以AM=$\frac{1}{3}$AB;
(3)分兩種情況討論,①當(dāng)點(diǎn)N在線段AB上時(shí),②當(dāng)點(diǎn)N在線段AB的延長(zhǎng)線上時(shí),然后根據(jù)數(shù)量關(guān)系即可求解.
解答 解:(1)當(dāng)點(diǎn)C、D運(yùn)動(dòng)了2s時(shí),CM=2cm,BD=4cm,
∵AB=10cm,CM=2cm,BD=4cm,
∴AC+MD=AB-CM-BD=10-2-4=4cm;
(2)根據(jù)C、D的運(yùn)動(dòng)速度知:BD=2MC,
∵M(jìn)D=2AC,
∴BD+MD=2(MC+AC),即MB=2AM,
∵AM+BM=AB,
∴AM+2AM=AB,
∴AM=$\frac{1}{3}$AB.
故答案為$\frac{1}{3}$;
(3)當(dāng)點(diǎn)N在線段AB上時(shí),如圖.
∵AN-BN=MN,
又∵AN-AM=MN,
∴BN=AM=$\frac{1}{3}$AB,
∴MN=$\frac{1}{3}$AB,即$\frac{MN}{AB}$=$\frac{1}{3}$;
當(dāng)點(diǎn)N在線段AB的延長(zhǎng)線上時(shí),如圖.
∵AN-BN=MN,
又∵AN-BN=AB,
∴MN=AB,即$\frac{MN}{AB}$=1.
綜上所述,$\frac{MN}{AB}$=$\frac{1}{3}$或1.
點(diǎn)評(píng) 本題考查了一元一次方程的應(yīng)用,靈活運(yùn)用線段的和、差、倍、分轉(zhuǎn)化線段之間的數(shù)量關(guān)系是十分關(guān)鍵的一點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3x5-4x3=-x2 | B. | 2$\sqrt{3}+2\sqrt{2}=2\sqrt{5}$ | ||
C. | (-x)4•(-x2)=-x8 | D. | (3a5x3-9ax5)÷(-3ax3)=3x2-a4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$) | B. | ($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$) | C. | (-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$) | D. | (-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com