【題目】隨著某市養(yǎng)老機構(養(yǎng)老機構指社會福利院、養(yǎng)老院、社區(qū)養(yǎng)老中心等)建設穩(wěn)步推進,擁有的養(yǎng)老床位不斷增加.
(1)該市的養(yǎng)老床位數(shù)從年底的萬個增長到年底的萬個,求該市這兩年(從年底到年底)擁有的養(yǎng)老床位數(shù)的平均年增長率;
(2)若該市某社區(qū)今年準備新建一養(yǎng)老中心,其中規(guī)劃建造三類養(yǎng)老專用房間共間,這三類養(yǎng)老專用房間分別為單人間(個養(yǎng)老床位),雙人間(個養(yǎng)老床位),三人間(個養(yǎng)老床位),因?qū)嶋H需要,單人間房間數(shù)在至之間(包括和),且雙人間的房間數(shù)是單人間的倍,設規(guī)劃建造單人間的房間數(shù)為.
①若該養(yǎng)老中心建成后可提供養(yǎng)老床位個,求的值;
②直接寫出:該養(yǎng)老中心建成后最多提供養(yǎng)老床位 個;最少提供養(yǎng)老床位 個.
【答案】(1)該市這兩年擁有的養(yǎng)老床位數(shù)的平均年增長率為;(2)①的值是;②,.
【解析】
(1)設該市這兩年擁有的養(yǎng)老床位數(shù)的平均年增長率為x,根據(jù)“2016年的床位數(shù)=2014年的床位數(shù)×(1+增長率)的平方”可列出關于x的一元二次方程,解方程即可得出結論;
(2)①設規(guī)劃建造單人間的房間數(shù)為t(10≤t≤30),則建造雙人間的房間數(shù)為2t,三人間的房間數(shù)為100﹣3t,根據(jù)“可提供的床位數(shù)=單人間數(shù)+2倍的雙人間數(shù)+3倍的三人間數(shù)”即可得出關于t的一元一次方程,解方程即可得出結論;
②設該養(yǎng)老中心建成后能提供養(yǎng)老床位y個,根據(jù)“可提供的床位數(shù)=單人間數(shù)+2倍的雙人間數(shù)+3倍的三人間數(shù)”即可得出y關于t的函數(shù)關系式,根據(jù)一次函數(shù)的性質(zhì)結合t的取值范圍,即可得出結論.
(1)設該市這兩年擁有的養(yǎng)老床位數(shù)的平均年增長率為x,由題意可列出方程:
2(1+x)2=2.88
解得:x1=0.2=20%,x2=﹣2.2(不合題意,舍去).
答:該市這兩年擁有的養(yǎng)老床位數(shù)的平均年增長率為20%.
(2)①設規(guī)劃建造單人間的房間數(shù)為t(10≤t≤30),則建造雙人間的房間數(shù)為2t,三人間的房間數(shù)為100﹣3t,由題意得:t+4t+3(100﹣3t)=200,解得:t=25.
答:t的值是25.
②設該養(yǎng)老中心建成后能提供養(yǎng)老床位y個,由題意得:y=t+4t+3(100﹣3t)=﹣4t+300(10≤t≤30).
∵k=﹣4<0,∴y隨t的增大而減小.
當t=10時,y的最大值為300﹣4×10=260(個),當t=30時,y的最小值為300﹣4×30=180(個).
答:該養(yǎng)老中心建成后最多提供養(yǎng)老床位260個,最少提供養(yǎng)老床位180個.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ADC=∠ABC=45°,CD=,BC=,連接AC、BD,若AC⊥AB,則BD的長度為_______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校20名數(shù)學教師的年齡(單位:歲)情況如下:29,42,58,37,53,52,49,24,37,46,42,55,40,38,50,26,54,26,44,52.
(1)填寫下面的頻率分布表:
分組 | 頻數(shù) | 頻率 |
19.5~29.5 | ||
29.5~39.5 | ||
39.5~49.5 | ||
49.5~59.5 | ||
合計 |
(2)畫出數(shù)據(jù)的頻數(shù)分布直方圖.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形DEFG的頂點D、E在△ABC的邊BC上,頂點G、F分別在邊AB、AC上.如果BC=4,△ABC的面積是6,那么這個正方形的邊長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個警察抓兩個小偷,目擊者說:兩個小偷分別躲藏在六個房間中的兩間,但不知道他們到底躲藏在哪兩間。而如果警察沖進了無人的房間,那么小偷就會趁機逃跑。如果兩個警察隨機地沖進兩個房間抓小偷,(1)至少能抓獲一個小偷的概率是多少?(2)兩個小偷全部抓獲的概率是多少?請簡單說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,點E為邊AD的中點,且∠ABC=60°,AB=6,BE交AC于點F,則AF=( )
A. 1 B. 2 C. 2.5 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙的直徑,CD是∠ACB的平分線交⊙O于點D,過D作⊙O的切線交CB的延長線于點E.若AB=4,∠E=75°,則CD的長為( 。
A. B. 2 C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,AB=AD,∠C=120°,點E在上.
(1)求∠E的度數(shù);
(2)連接OD、OE,當∠DOE=90°時,AE恰好為⊙O的內(nèi)接正n邊形的一邊,求n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠A=90°,AB=AC=4,D是BC邊上一點,將點D繞點A逆時針旋轉60°得到點E,連接CE.
(1)當點E在BC邊上時,畫出圖形并求出∠BAD的度數(shù);
(2)當△CDE為等腰三角形時,求∠BAD的度數(shù);
(3)在點D的運動過程中,求CE的最小值.
(參考數(shù)值:sin75°=, cos75°=,tan75°=)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com