【題目】(1)如圖1,在△ABC中,∠A,P是BC邊上的一點(diǎn),,是點(diǎn)P關(guān)于AB、AC的對(duì)稱點(diǎn),連結(jié),分別交AB、AC于點(diǎn)D、E.
①若,求的度數(shù);
②請(qǐng)直接寫出∠A與的數(shù)量關(guān)系:___________________________;
(2)如圖2,在△ABC中,若∠BAC,用三角板作出點(diǎn)P關(guān)于AB、AC的對(duì)稱點(diǎn)、,(不寫作法,保留作圖痕跡),試判斷點(diǎn),與點(diǎn)A是否在同一直線上,并說(shuō)明理由.
【答案】(1)64°;(2)∠DPE=180°-2∠A;(3)在.
【解析】(1)①由軸對(duì)稱的性質(zhì)以及四邊形內(nèi)角和為360°可得:∠DPP1+∠DPE+∠EPP2+∠A=180°(i),由三角形外角的性質(zhì)以及三角形內(nèi)角和為180°得到2∠DPP1+∠DPE+2∠EPP2=180°(ii),解方程組即可得到結(jié)論
(2)由①得∠DPP1+∠DPE+∠EPP2+∠A=180°(i),2∠DPP1+∠DPE+2∠EPP2=180° (ii),解方程組即可得到結(jié)論.
(3)連接AP、AP1、AP2.根據(jù)軸對(duì)稱的性質(zhì),可得:∠4=∠1,∠3=∠2, 由∠BAC=90°,得到∠3+∠4=90°,即有∠1+∠2+∠3+∠4=180°,從而得到結(jié)論.
(1)①∵點(diǎn)P、點(diǎn)P1關(guān)于直線AB對(duì)稱,點(diǎn)P、點(diǎn)P2關(guān)于直線AC對(duì)稱,∴PD=P1D,PE=P2E,∴∠P1=∠DPP1,∠P2=∠EPP2,∴∠EDP=2∠DPP1,∠DEP=2∠EPP2,∠DPP1+∠DPE+∠EPP2+∠A=180°(i)
∵2∠DPP1+∠DPE+2∠EPP2=180° (ii)
(ii)—(i)得:∠DPP1+∠EPP2=∠A,
又∵∠A=58°,∴∠DPP1+∠EPP2=58°,
∴∠DPE=64°
(2)∠DPE=180°-2∠A .理由如下:
由①得:∠DPP1+∠DPE+∠EPP2+∠A=180°(i)
2∠DPP1+∠DPE+2∠EPP2=180° (ii)
(i)×2-(ii)得:2∠A-∠DPE=180°,
∴∠DPE=180°-2∠A .
(3)點(diǎn)P1,A,P2在同一條直線上.理由如下:
連接AP、AP1、AP2.
根據(jù)軸對(duì)稱的性質(zhì),可得:∠4=∠1,∠3=∠2,
∵∠BAC=90°,即∠1+∠2=90°,
∴∠3+∠4=90°,
∴∠1+∠2+∠3+∠4=180°,
即∠P1AP2=180°,
∴點(diǎn)P1 、A、P2在同一條直線上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形中,.射線,點(diǎn)從點(diǎn)出發(fā)沿射線以的速度運(yùn)動(dòng),同點(diǎn)從點(diǎn)出發(fā)沿射線以的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為;
(1)連接,當(dāng)經(jīng)過(guò)邊的中點(diǎn)時(shí),求證:;
(2)求當(dāng)為何值,四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BED=115°,那么∠BFD的度數(shù)是
A.62°B.64°C.57.5°D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的弦,D為OA半徑的中點(diǎn),過(guò)D作CD⊥OA交弦AB于點(diǎn)E,交⊙O于點(diǎn)F,且CE=CB.
(1)求證:BC是⊙O的切線;
(2)連接AF、BF,求∠ABF的度數(shù);
(3)如果BE=10,sinA=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“今有邑,東西七里,南北九里,各開(kāi)中門,出東門一十五里有木,問(wèn):出南門幾何步而見(jiàn)木?”這段話摘自《九章算術(shù)》,意思是說(shuō):如圖,矩形城池ABCD,城墻CD長(zhǎng)9里,城墻BC長(zhǎng)7里,東門所在的點(diǎn)E,南門所在的點(diǎn)F分別是CD,BC的中點(diǎn),EG⊥CD,EG=15里,FH⊥BC,點(diǎn)C在HG上,問(wèn)FH等于多少里?答案是FH=________里.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,一次函數(shù)y=x+2的圖象與反比例函數(shù)y=的圖象交于A、B兩點(diǎn),且點(diǎn)A的坐標(biāo)為(1,m).
(1)求反比例函數(shù)y=的表達(dá)式;
(2)點(diǎn)C(n,1)在反比例函數(shù)y=的圖象上,求△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探究:
新定義:
將一個(gè)平面圖形分為面積相等的兩部分的直線叫做該平面圖形的“等積線”,其“等積線”被該平面圖形截得的線段叫做該平面圖形的“等積線段”(例如圓的直徑就是圓的“等積線段”)
解決問(wèn)題:
已知在Rt△ABC中,∠BAC=90°,AB=AC=2.
(1)如圖1,若AD⊥BC,垂足為D,則AD是△ABC的一條等積線段,直接寫出AD的長(zhǎng);
(2)在圖2和圖3中,分別畫出一條等積線段,并直接寫出它們的長(zhǎng)度. (要求:圖1、圖2和圖3中的等積線段的長(zhǎng)度各不相等)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一名同學(xué)調(diào)查了全班名同學(xué)分別喜歡相聲、小品、歌曲、舞蹈節(jié)目的類別情況,并制成如下統(tǒng)計(jì)表:
最喜歡的節(jié)目類別 | 劃記 | 人數(shù) | 百分?jǐn)?shù)(%) |
相聲 | 正 | ||
小品 | 正正正一 | ||
歌曲 | 正正 | ||
舞蹈 | 正一 |
其中對(duì)這些節(jié)目類別的統(tǒng)計(jì)中,僅有一類節(jié)目的統(tǒng)計(jì)是完全正確的,該項(xiàng)統(tǒng)計(jì)類別是( )
A.相聲B.小品C.歌曲D.舞蹈
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校準(zhǔn)備從體育用品商店一次性購(gòu)買若干個(gè)籃球和足球(每個(gè)籃球的價(jià)格相同,每個(gè)足球的價(jià)格相同),購(gòu)買1個(gè)足球和2個(gè)籃球共需270元;購(gòu)買2個(gè)足球和3個(gè)籃球共需440元.
(1)問(wèn)足球和籃球的單價(jià)各是多少元?
(2)若購(gòu)買足球和籃球共24個(gè),且購(gòu)買籃球的個(gè)數(shù)大于足球個(gè)數(shù)的2倍,購(gòu)買球的總費(fèi)用不超過(guò)2220元,問(wèn)該學(xué)校有哪幾種不同的購(gòu)買方案?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com