【題目】如圖,已知⊙O△ABC的外接圓,AB⊙O的直徑,DAB延長(zhǎng)線(xiàn)上一點(diǎn),AE⊥DCDC的延長(zhǎng)線(xiàn)于點(diǎn)E,且AC平分∠EAB.

(1)求證:DE⊙O的切線(xiàn);

2)若AB=6AE=,求BDBC的長(zhǎng).

【答案】1證明見(jiàn)解析;2BD=2;BC=

【解析】試題分析:(1)要證DE是⊙O的切線(xiàn),只要連接OC,再證∠DCO=90°即可.

2)已知兩邊長(zhǎng),求其它邊的長(zhǎng),可以證明三角形相似由相似三角形對(duì)應(yīng)邊成比例來(lái)求.

試題解析:(1)連接OCAEDC,∴∠E=90°AC平分EAB∴∠EAC=∠BAC

OA=OC,∴∠ACO=∠BAC,∴∠EAC=∠ACO,OCAE∴∠OCD=∠E=90°,DCO的切線(xiàn).

2∵∠D=D,E=OCD=90°DCODEA, ,,,BD=2ABO的直徑,∴∠ACB=90°,∴∠E=ACB=90°∵∠EAC=BACRtEACRtCAB,,AC2=由勾股定理得BC===

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把下列各數(shù)填在相應(yīng)的大括號(hào)內(nèi):

1,-0.1,-789,250,-20,-3.14,

正整數(shù)集{___…} 負(fù)整數(shù)集{___…},

正分?jǐn)?shù)集{____…}; 負(fù)分?jǐn)?shù)集{____…};

正有理數(shù)集{______…}; 負(fù)有理數(shù)集{______…}

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠B= 60°.

1)如圖①.若點(diǎn)EF分別在邊AB、AD上,且BE=AF,求證:CEF是等邊三角形.

2)小明發(fā)現(xiàn),當(dāng)點(diǎn)E、F分別在邊AB、AD上,且∠CEF=60°時(shí),CEF也是等邊三角形,

并通過(guò)畫(huà)圖驗(yàn)證了猜想;小麗通過(guò)探索,認(rèn)為應(yīng)該以CE= EF為突破口,構(gòu)造兩個(gè)全等三角形:小倩受到小麗的啟發(fā),嘗試在BC上截取BM =BE,并連接ME,如圖②,很快就證明了CEF是等邊三角形.請(qǐng)你根據(jù)小倩的方法,寫(xiě)出完整的證明過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:

問(wèn)題:如圖1,在平行四邊形ABCD中,EAD上一點(diǎn),AE=AB,EAB=60°,過(guò)點(diǎn)E作直線(xiàn)EF,在EF上取一點(diǎn)G,使得∠EGB=EAB,連接AG.

求證:EG =AG+BG.

小明同學(xué)的思路是:作∠GAH=EABGE于點(diǎn)H,構(gòu)造全等三角形,經(jīng)過(guò)推理解決問(wèn)題.

參考小明同學(xué)的思路,探究并解決下列問(wèn)題:

(1)完成上面問(wèn)題中的證明;

(2)如果將原問(wèn)題中的EAB=60°”改為EAB=90°”,原問(wèn)題中的其它條件不變(如圖2),請(qǐng)?zhí)骄烤(xiàn)段EG、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,頂點(diǎn)為(1,4)的拋物線(xiàn)與直線(xiàn)交于點(diǎn)A(2,2),直線(xiàn)軸交于點(diǎn)B與軸交于點(diǎn)C

(1)的值及拋物線(xiàn)的解析式

(2)P為拋物線(xiàn)上的點(diǎn),點(diǎn)P關(guān)于直線(xiàn)AB的對(duì)稱(chēng)軸點(diǎn)在軸上,求點(diǎn)P的坐標(biāo)

(3)點(diǎn)D軸上方拋物線(xiàn)上的一點(diǎn),點(diǎn)E為軸上一點(diǎn),以A 、BE、D為頂點(diǎn)的四邊為平行四邊形時(shí),直接寫(xiě)出點(diǎn)E的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,EABCD的邊CD的中點(diǎn),延長(zhǎng)AEBC的延長(zhǎng)線(xiàn)于點(diǎn)F.

(1)求證:ADE≌△FCE.

(2)若∠BAF=90°,BC=5,EF=3,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)A(3,0),B(2,﹣3),并且以x=1為對(duì)稱(chēng)軸.

(1)求此函數(shù)的解析式;

(2)作出二次函數(shù)的大致圖象;

(3)在對(duì)稱(chēng)軸x=1上是否存在一點(diǎn)P,使△PABPA=PB?若存在,求出P點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】認(rèn)真閱讀下面的材料,完成有關(guān)問(wèn)題:

材料:在學(xué)習(xí)絕對(duì)值時(shí),我們已了解絕對(duì)值的幾何意義,如|5-3|表示5、3在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離;又如|5+3|=|5--3|,所以|5+3|表示5、-3在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離。因此,一般地,點(diǎn)A,B在數(shù)軸上分別表示有理數(shù)a,b,那么A,B之間的距離(也就是線(xiàn)段AB的長(zhǎng)度)可表示為|a-b|。

因此我們可以用絕對(duì)值的幾何意義按如下方法求的最小值;

即數(shù)軸上x1對(duì)應(yīng)的點(diǎn)之間的距離,即數(shù)軸上x2對(duì)應(yīng)的點(diǎn)之間的距離,把這兩個(gè)距離在同一個(gè)數(shù)軸上表示出來(lái),然后把距離相加即可得原式的值.

設(shè)A、BP三點(diǎn)對(duì)應(yīng)的數(shù)分別是1、2x.

當(dāng)1x2時(shí),即P點(diǎn)在線(xiàn)段AB上,此時(shí);

當(dāng)x2時(shí),即P點(diǎn)在B點(diǎn)右側(cè),此時(shí) PAPBAB2PBAB

當(dāng)x 1時(shí),即P點(diǎn)在A點(diǎn)左側(cè),此時(shí)PAPBAB2PAAB;

綜上可知,當(dāng)1x2時(shí)(P點(diǎn)在線(xiàn)段AB上),取得最小值為1

請(qǐng)你用上面的思考方法結(jié)合數(shù)軸完成以下問(wèn)題:

1)滿(mǎn)足x的取值范圍是 。

2)求的最小值為 ,最大值為 。

備用圖:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)使關(guān)于的分式方程的解為正數(shù),且使關(guān)于的不等式組的解集為,求符合條件的所有整數(shù)的和.

查看答案和解析>>

同步練習(xí)冊(cè)答案