【題目】如圖,△APB中,AB=2,∠APB=90°,在AB的同側作正△ABD、正△APE和正△BPC,則四邊形PCDE面積的最大值是

【答案】1
【解析】解:延長EP交BC于點F, ∵∠APB=90°,∠APE=∠BPC=60°,
∴∠EPC=150°,
∴∠CPF=180°﹣150°=30°,
∴PF平分∠BPC,
又∵PB=PC,
∴PF⊥BC,
設Rt△ABP中,AP=a,BP=b,則
CF= CP= b,a2+b2=22=4,
∵△APE和△ABD都是等邊三角形,
∴AE=AP,AD=AB,∠EAP=∠DAB=60°,
∴∠EAD=∠PAB,
∴△EAD≌△PAB(SAS),
∴ED=PB=CP,
同理可得:△APB≌△DCB(SAS),
∴EP=AP=CD,
∴四邊形CDEP是平行四邊形,
∴四邊形CDEP的面積=EP×CF=a× b= ab,
又∵(a﹣b)2=a2﹣2ab+b2≥0,
∴2ab≤a2+b2=4,
ab≤1,
即四邊形PCDE面積的最大值為1.
故答案為:1

先延長EP交BC于點F,得出PF⊥BC,再判定四邊形CDEP為平行四邊形,根據(jù)平行四邊形的性質得出:四邊形CDEP的面積=EP×CF=a× b= ab,最后根據(jù)a2+b2=4,判斷 ab的最大值即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線 軸交于點A、B,與 軸交于點C,則能使△ABC為等腰三角形拋物線的條數(shù)是( )
A.5
B.4
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司今年如果用原線下銷售方式銷售一產(chǎn)品,每月的銷售額可達100萬元.由于該產(chǎn)品供不應求,公司計劃于3月份開始全部改為線上銷售,這樣,預計今年每月的銷售額y(萬元)與月份x(月)之間的函數(shù)關系的圖象如圖1中的點狀圖所示(5月及以后每月的銷售額都相同),而經(jīng)銷成本p(萬元)與銷售額y(萬元)之間函數(shù)關系的圖象圖2中線段AB所示.
(1)求經(jīng)銷成本p(萬元)與銷售額y(萬元)之間的函數(shù)關系式;
(2)分別求該公司3月,4月的利潤;
(3)問:把3月作為第一個月開始往后算,最早到第幾個月止,該公司改用線上銷售后所獲得利潤總額比同期用線下方式銷售所能獲得的利潤總額至少多出200萬元?(利潤=銷售額﹣經(jīng)銷成本)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A(0,1),點B在x軸正半軸上的一動點,以AB為邊作等腰直角三角形ABC,使點C在第一象限,∠BAC=90°,設點B的橫坐標為x,點C的縱坐標為y,則表示y與x的函數(shù)關系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,AC=5,BC=12,CO⊥AB于點O,D是線段OB上一點,DE=2,ED∥AC(∠ADE<90°),連接BE、CD.設BE、CD的中點分別為P、Q.
(1)求AO的長;
(2)求PQ的長;
(3)設PQ與AB的交點為M,請直接寫出|PM﹣MQ|的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售甲、乙兩種糖果,購買3千克甲種糖果和1千克乙種糖果共需44元,購買1千克甲種糖果和2千克乙種糖果共需38元.
(1)求甲、乙兩種糖果的價格;
(2)若購買甲、乙兩種糖果共20千克,且總價不超過240元,問甲種糖果最少購買多少千克?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】
(1)計算:( 1+ cos45°﹣ ;
(2)化簡:(x+ )÷

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】商店只有雪碧、可樂、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學去該店購買飲料,每種飲料被選中的可能性相同.
(1)若他去買一瓶飲料,則他買到奶汁的概率是;
(2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請用樹狀圖或列表法求出他恰好買到雪碧和奶汁的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a>0,c<0)交x軸于點A,B,交y軸于點C,設過點A,B,C三點的圓與y軸的另一個交點為D.
(1)如圖1,已知點A,B,C的坐標分別為(﹣2,0),(8,0),(0,﹣4);
①求此拋物線的表達式與點D的坐標;
②若點M為拋物線上的一動點,且位于第四象限,求△BDM面積的最大值;

(2)如圖2,若a=1,求證:無論b,c取何值,點D均為定點,求出該定點坐標.

查看答案和解析>>

同步練習冊答案