【題目】某公司今年如果用原線下銷售方式銷售一產(chǎn)品,每月的銷售額可達(dá)100萬元.由于該產(chǎn)品供不應(yīng)求,公司計(jì)劃于3月份開始全部改為線上銷售,這樣,預(yù)計(jì)今年每月的銷售額y(萬元)與月份x(月)之間的函數(shù)關(guān)系的圖象如圖1中的點(diǎn)狀圖所示(5月及以后每月的銷售額都相同),而經(jīng)銷成本p(萬元)與銷售額y(萬元)之間函數(shù)關(guān)系的圖象圖2中線段AB所示.
(1)求經(jīng)銷成本p(萬元)與銷售額y(萬元)之間的函數(shù)關(guān)系式;
(2)分別求該公司3月,4月的利潤(rùn);
(3)問:把3月作為第一個(gè)月開始往后算,最早到第幾個(gè)月止,該公司改用線上銷售后所獲得利潤(rùn)總額比同期用線下方式銷售所能獲得的利潤(rùn)總額至少多出200萬元?(利潤(rùn)=銷售額﹣經(jīng)銷成本)

【答案】
(1)解:設(shè)p=ky+b,(100,60),(200,110)代入得 解得 ,

∴p= y+10


(2)解:∵y=150時(shí),p=85,∴三月份利潤(rùn)為150﹣85=65萬元.

∵y=175時(shí),p=97.5,∴四月份的利潤(rùn)為175﹣97.5=77.5萬元


(3)解:設(shè)最早到第x個(gè)月止,該公司改用線上銷售后所獲得利潤(rùn)總額比同期用線下方式銷售所能獲得的利潤(rùn)總額至少多出200萬元

∵5月份以后的每月利潤(rùn)為90萬元,

∴65+77.5+90(x﹣2)﹣40x≥200,

∴x≥4.75,

∴最早到第5個(gè)月止,該公司改用線上銷售后所獲得利潤(rùn)總額比同期用線下方式銷售所能獲得的利潤(rùn)總額至少多出200萬元


【解析】(1)設(shè)p=ky+b,(100,60),(200,110)代入即可解決問題.(2)根據(jù)利潤(rùn)=銷售額﹣經(jīng)銷成本,即可解決問題.(3)設(shè)最早到第x個(gè)月止,該公司改用線上銷售后所獲得利潤(rùn)總額比同期用線下方式銷售所能獲得的利潤(rùn)總額至少多出200萬元,列出不等式即可解決問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上的任意一點(diǎn) (不與點(diǎn)A、B重合),連接CO并延長(zhǎng)CO交⊙O于點(diǎn)D,連接AD.
(1)弦長(zhǎng)AB等于(結(jié)果保留根號(hào));
(2)當(dāng)∠D=20°時(shí),求∠BOD的度數(shù);
(3)當(dāng)AC的長(zhǎng)度為多少時(shí),以A、C、D為頂點(diǎn)的三角形與以B、C、0為頂點(diǎn)的三角形相似?請(qǐng)寫出解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校田園科技社團(tuán)計(jì)劃購進(jìn)A、B兩種花卉,兩次購買每種花卉的數(shù)量以及每次的總費(fèi)用如下表所示:

花卉數(shù)量(單位:株)

總費(fèi)用(單位:元)

A

B

第一次購買

10

25

225

第二次購買

20

15

275


(1)你從表格中獲取了什么信息?(請(qǐng)用自己的語言描述,寫出一條即可);
(2)A、B兩種花卉每株的價(jià)格各是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,AD=2,AB=2 ,以點(diǎn)A為圓心,AD為半徑的圓與BC相切于點(diǎn)E,交AB于點(diǎn)F
(1)求∠ABE的大小及 的長(zhǎng)度;
(2)在BE的延長(zhǎng)線上取一點(diǎn)G,使得 上的一個(gè)動(dòng)點(diǎn)P到點(diǎn)G的最短距離為2 ﹣2,求BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△AOB中,∠O=90°,AO=8cm,BO=6cm,點(diǎn)C從A點(diǎn)出發(fā),在邊AO上以2cm/s的速度向O點(diǎn)運(yùn)動(dòng),與此同時(shí),點(diǎn)D從點(diǎn)B出發(fā),在邊BO上以1.5cm/s的速度向O點(diǎn)運(yùn)動(dòng),過OC的中點(diǎn)E作CD的垂線EF,則當(dāng)點(diǎn)C運(yùn)動(dòng)了s時(shí),以C點(diǎn)為圓心,1.5cm為半徑的圓與直線EF相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為2,點(diǎn)A、C在⊙O上,線段BD經(jīng)過圓心O,∠ABD=∠CDB=90°,AB=1,CD= ,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A(m,4),B(﹣4,n)在反比例函數(shù)y= (k>0)的圖象上,經(jīng)過點(diǎn)A、B的直線與x軸相交于點(diǎn)C,與y軸相交于點(diǎn)D.
(1)若m=2,求n的值;
(2)求m+n的值;
(3)連接OA、OB,若tan∠AOD+tan∠BOC=1,求直線AB的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△APB中,AB=2,∠APB=90°,在AB的同側(cè)作正△ABD、正△APE和正△BPC,則四邊形PCDE面積的最大值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鹽城電視塔是我市標(biāo)志性建筑之一.如圖,在一次數(shù)學(xué)課外實(shí)踐活動(dòng)中,老師要求測(cè)電視塔的高度AB.小明在D處用高1.5m的測(cè)角儀CD,測(cè)得電視塔頂端A的仰角為30°,然后向電視塔前進(jìn)224m到達(dá)E處,又測(cè)得電視塔頂端A的仰角為60°.求電視塔的高度AB.( 取1.73,結(jié)果精確到0.1m)

查看答案和解析>>

同步練習(xí)冊(cè)答案