【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直徑,⊙O交BC于點D,DE⊥AC于點E,BE交⊙O于點F,連接AF,AF的延長線交DE于點P.
(1)求證:DE是⊙O的切線;
(2)求tan∠ABE的值;
(3)若OA=2,求線段AP的長.
【答案】
(1)證明:連接AD、OD,如圖,
∵AB是⊙O的直徑,
∴∠ADB=90°,
∵AB=AC,
∴AD垂直平分BC,即DC=DB,
∴OD為△BAC的中位線,
∴OD∥AC,
而DE⊥AC,
∴OD⊥DE,
∴DE是⊙O的切線;
(2)解:∵OD⊥DE,DE⊥AC,
∴四邊形OAED為矩形,
而OD=OA,
∴四邊形OAED為正方形,
∴AE=AO,
∴tan∠ABE= = ;
(3)解:∵AB是⊙O的直徑,
∴∠AFB=90°,
∴∠ABF+∠FAB=90°,
而∠EAP+∠FAB=90°,
∴∠EAP=∠ABF,
∴tan∠EAP=tan∠ABE= ,
在Rt△EAP中,AE=2,
∵tan∠EAP= = ,
∴EP=1,
∴AP= = .
【解析】(1)連接AD、OD,根據圓周角定理得∠ADB=90°,由AB=AC,根據等腰三角形的直線得DC=DB,所以OD為△BAC的中位線,則OD∥AC,然后利用DE⊥AC得到OD⊥DE,這樣根據切線的判定定理即可得到結論;(2)易得四邊形OAED為正方形,然后根據正切的定義計算tan∠ABE的值;(3)由AB是⊙O的直徑得∠AFB=90°,再根據等角的余角相等得∠EAP=∠ABF,則tan∠EAP=tan∠ABE= ,在Rt△EAP中,利用正切的定義可計算出EP,然后利用勾股定理可計算出AP.
【考點精析】根據題目的已知條件,利用圓周角定理和切線的判定定理的相關知識可以得到問題的答案,需要掌握頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;切線的判定方法:經過半徑外端并且垂直于這條半徑的直線是圓的切線.
科目:初中數學 來源: 題型:
【題目】某同學做一道數學題,已知兩個多項式A、B,B=3x2y-5xy+x+7,試求A+B,這位同學把A+B看成A-B,結果求出的答案為6x2y+12xy-2x-9.
(1)請你替這位同學求出的正確答案;
(2)當x取任意數值,A-3B的值是一個定值,求y的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】臺風是一種自然災害,它以臺風中心為圓心在周圍數十千米范圍內形成氣旋風暴,有極強的破壞力,如圖,據氣象觀測,距沿海某城市A的正南方向220千米B處有一臺風中心,其中心最大風力為12級,每遠離臺風中心20千米,風力就會減弱一級,該臺風中心現正以15千米/時的速度沿北偏東30方向往C移動,且臺風中心風力不變,若城市所受風力達到或走過四級,則稱為受臺風影響.
(1)該城市是否會受到這交臺風的影響?請說明理由.
(2)若會受到臺風影響,那么臺風影響該城市持續(xù)時間有多少?
(3)該城市受到臺風影響的最大風力為幾級?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一條筆直的公路上有A、B兩地,甲騎自行車從A地到B地;乙騎自行車從B地到A地,到達A地后立即按原路返回,如圖是甲、乙兩人離B地的距離y(km)與行駛時x(h)之間的函數圖象,根據圖象解答以下問題:
(1)寫出A、B兩地之間的距離;
(2)求出點M的坐標,并解釋該點坐標所表示的實際意義;
(3)若兩人之間保持的距離不超過3km時,能夠用無線對講機保持聯系,請直接寫出甲、乙兩人能夠用無線對講機保持聯系時x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】韋玲和覃靜兩人玩“剪刀、石頭、布”的游戲,游戲規(guī)則為:剪刀勝布,布勝石頭,石頭勝剪刀.
(1)請用列表法或樹狀圖表示出所有可能出現的游戲結果;
(2)求韋玲勝出的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB>BC,按以下步驟作圖:以A為圓心,小于AD的長為半徑畫弧,分別交AB、CD于E、F;再分別以E、F為圓心,大于 EF的長半徑畫弧,兩弧交于點G;作射線AG交CD于點H.則下列結論:①AG平分∠DAB,②CH= DH,③△ADH是等腰三角形,④S△ADH= S四邊形ABCH .
其中正確的有( )
A.①②③
B.①③④
C.②④
D.①③
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com