【題目】直線l:y=2x+2m(m>0)與x,y軸分別交于A.B兩點,點M是雙曲線(x>0)上一點,分別連接MA、MB.
(1)如圖,當(dāng)點A(,0)時,恰好AB=AM,∠MAB=90°,試求M的坐標(biāo);
(2)如圖,當(dāng)m=3時,直線l與雙曲線交于C.D兩點,分別連接OC、OD,試求△OCD面積;
(3)如圖,在雙曲線上是否存在點M,使得以AB為直角邊的△MAB與△AOB相似?如果存在,請直接寫出點M的坐標(biāo);如果不存在,請說明理由.
【答案】(1)(,);(2)3;(3)(4,1),(2,2),(,),(,).
【解析】
(1)把A的坐標(biāo)代入直線的解析式即可求得m的值,然后證明△OAB≌△EMA,求得ME和AE的長,則M的坐標(biāo)即可求解;
(2)解一次函數(shù)與反比例函數(shù)的解析式組成的方程組,即可求得C和D的坐標(biāo),作DF⊥y軸于點F,CG⊥y軸,根據(jù)S△OCD=S梯形CDFG+S△OCG-S△ODF求解;
(3)分類討論:以∠BAM和∠ABM為直角兩種情況.①當(dāng)∠BAM=∠BOA=90°時,作MH⊥x軸于點H,先求得AM的長,再根據(jù)相似三角形的性質(zhì)求得AH和MH的長,進(jìn)而求得M的坐標(biāo),代入反比例函數(shù)關(guān)系式求出m即可,②當(dāng)∠ABM=90°時,過點M作MH⊥y軸于點H,同理可求出M坐標(biāo).
(1)把A(,0)代入y=2x+2m得:+2m=0,
解得:m=.
則直線的解析式是:y=2x+,
令x=0,解得y=,
則B的坐標(biāo)是(0, ).
如圖所示,作ME⊥x軸于點E.
∵∠BAM=90°,
∴∠BAO+∠MAE=90°,
又∵直角△AEM中,∠AME+∠MAE=90°,
∴∠BAO=∠AME.
在△OAB和△EMA中,
∴△OAB≌△EMA(AAS),
∴ME=OA=,AE=OB=.
∴OE=OA+AE=,
則M的坐標(biāo)是(,);
(2)當(dāng)m=3時,一次函數(shù)的解析式是y=2x+6.
解不等式組,
得或,
則D的坐標(biāo)是(1,4),C的坐標(biāo)是(2,2).
如圖,作DF⊥y軸于點F,CG⊥y軸,則F和G的坐標(biāo)分別是(0,4),(0,2).
則S△OCG=S△ODF=×4=2,
S梯形CDFG=×(1+2)×(42)=3,
則S△OCD=S梯形CDFG+S△OCGS△ODF=3;
(3)如圖,作MH⊥x軸于點H.
則△AOB、△ABM、△AMH都是兩直角邊的比是1:2的直角三角形.
①當(dāng)∠BAM=∠BOA=90°時,OA=m,OB=2m,得:
AM=AB=m,MH=OA=;
從而得到點M的坐標(biāo)為(2m, ).
代入雙曲線解析式為:=,
解得:m=2,則點M的坐標(biāo)為(4,1);
同理當(dāng)∠BAM=∠OBA時,可求得點M的坐標(biāo)為(,).
②當(dāng)∠ABM=90°時,過點M作MH⊥y軸于點H,
則△AOB、△ABM、△BMH都是直角邊的比是1:2的直角三角形;
當(dāng)∠AMB=∠OAB時,OB=m,OA=2m,
得:AH=2OB=2m,MH=2OA=4m,
從而點M的坐標(biāo)為(4m,4m)
代入雙曲線的解析式得:4m×4m=4,
解得:m=,點M的坐標(biāo)為(2,2);
同理,當(dāng)∠AMB=∠OBA時,點M的坐標(biāo)為(,).
綜上所述,滿足條件的點M的坐標(biāo)是:(4,1),(2,2),(,),(,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=cx2+2cx-3c(c≠0),則下列說法不正確的是( )
A.對稱軸為直線x=-1
B.與x軸有兩個不同的交點
C.可能過原點
D.若(-4,y1)、(4,y2)是拋物線的兩點,則y1y2>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⊙O為△ABC的外接圓,請僅用無刻度的直尺,根據(jù)下列條件分別在圖1,圖2中畫出一條弦,使這條弦將△ABC分成面積相等的兩部分(保留作圖痕跡,不寫作法).
(1)如圖1,AC=BC;
(2)如圖2,直線l與⊙O相切于點P,且l∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2﹣bx+c的y與x的部分對立值如表:
x | ﹣1 | 0 | 1 | 3 |
y | ﹣3 | 1 | 3 | 1 |
下列結(jié)論①拋物線的開口向下:②其圖象的對稱軸為x=1:③當(dāng)x<1時.函數(shù)值y隨x的增大而增大,④方程ax2+bx+c=0有一個根大于4.其中正確的結(jié)論有_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BD平分∠ABC交AC于D,EF垂直平分BD,分別交AB,BC,BD于E,F(xiàn),G,連接DE,DF.
(1)求證:DE=DF;
(2)若∠ABC=30°,∠C=45°,DE=4,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年北疆承辦了世界園藝博覽會,某商店為了抓住博覽會的商機(jī),決定購買A.B兩種世園會紀(jì)念品,若購進(jìn)A中紀(jì)念品20件,B種紀(jì)念品10件,需要2000元;若購進(jìn)A中紀(jì)念品8件,B種紀(jì)念品6件,需要1100元.
(1)求購進(jìn)A.B兩種紀(jì)念品每件各需要多少元?
(2)若該商店決定拿出10000元全部用來購進(jìn)這兩種紀(jì)念品,考慮到市場需求,要求購進(jìn)A種紀(jì)念品的數(shù)量不少于B種的6倍,且少于B種紀(jì)念品數(shù)量的8倍,設(shè)購進(jìn)B種紀(jì)念品a件,則該商店共有幾種進(jìn)貨方案?
(3)在第(2)問的條件下,若銷售每件A種紀(jì)念品可獲利潤30元,每件B種紀(jì)念品可獲利潤40元,設(shè)總利潤為y元,請寫出總利潤y(元)與a(個)的函數(shù)關(guān)系式,并根據(jù)函數(shù)關(guān)系式說明總利潤最高時的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解全校學(xué)生上學(xué)的交通方式,該校九年級(8)班的5名同學(xué)聯(lián)合設(shè)計了一份調(diào)查問卷,對該校部分學(xué)生進(jìn)行了隨機(jī)調(diào)查.按A(騎自行車)、B(乘公交車)、C(步行)、D(乘私家車)、E(其他方式)設(shè)置選項,要求被調(diào)查同學(xué)從中單選.并將調(diào)查結(jié)果繪制成條形統(tǒng)計圖1和扇形統(tǒng)計圖2,根據(jù)以上信息,解答下列問題:
(1)本次接受調(diào)查的總?cè)藬?shù)是 人,并把條形統(tǒng)計圖補(bǔ)充完整;
(2)在扇形統(tǒng)計圖中,“步行”的人數(shù)所占的百分比是 ,“其他方式”所在扇形的圓心角度數(shù)是 ;
(3)已知這5名同學(xué)中有2名女同學(xué),要從中選兩名同學(xué)匯報調(diào)查結(jié)果.請你用列表法或畫樹狀圖的方法,求出恰好選出1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為紀(jì)念建國70周年,某校舉行班級歌詠比賽,歌曲有:《我愛你,中國》,《歌唱祖國》,《我和我的祖國》(分別用字母A,B,C依次表示這三首歌曲).比賽時,將A,B,C這三個字母分別寫在3張無差別不透明的卡片正面上,洗勻后正面向下放在桌面上,八(1)班班長先從中隨機(jī)抽取一張卡片,放回后洗勻,再由八(2)班班長從中隨機(jī)抽取一張卡片,進(jìn)行歌詠比賽.
(1)八(1)班抽中歌曲《我和我的祖國》的概率是__________;
(2)試用畫樹狀圖或列表的方法表示所有可能的結(jié)果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,直線MN經(jīng)過點A,BE⊥MN于點E,CF⊥MN于點F,DG⊥MN于點G.
(1)當(dāng)MN繞點A旋轉(zhuǎn)到圖①位置時,求證:BE +CF =DG; .
(2)當(dāng)MN繞點A旋轉(zhuǎn)到圖②和圖③位置時,線段BE,CF,DG之間又有怎樣的數(shù)量關(guān)系?
請寫出你的猜想,不需要證明;
(3)在(1)(2)的條件下,若CD =2AE =6,EF =43,則CF= 。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com