精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在ABC中,AD平分∠BACBCD,且BDCD,DEAB于點E,DFAC于點F

1)求證:ABAC;

2)若DC4,∠DAC30°,求AD的長.

【答案】1)證明見解析;(2

【解析】

1)根據角平分線的性質得到DEDF,證明RtBDERtCDF,根據全等三角形的性質得到∠B=∠C,根據等腰三角形的判定定理證明;

2)根據直角三角形的性質求出AC,根據勾股定理計算即可.

1)證明:∵AD平分∠BAC,DEAB,DFAC,

DEDF,

RtBDERtCDF中, ,

RtBDERtCDF

∴∠B=∠C,

ABAC;

2)∵AD平分∠BAC,BDCD,

ADBC

∵∠DAC30°,

AC2DC8

AD

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】為了全面提高學生的能力,學校組織課外活動小組,并要求初一學年積極參加,初一學年共有四個班,參加的學生共有(6a3b)人,其中一班有a人參加,二班參加的人數比一班參加的人數兩倍少b人,三班參加的人數比二班參加的人數一半多1人.

1)求三班的人數(用含a,b的式子表示);

2)求四班的人數(用含a,b的式子表示);

3)若四個班共54人參加了課外活動,求二班比三班多多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商店銷售甲、乙兩種商品,現有如下信息:

請結合以上信息,解答下列問題:

(1)求甲、乙兩種商品的進貨單價;

(2)已知甲、乙兩種商品的零售單價分別為2元、3元,該商店平均每天賣出甲商品500件和乙商品1300件,經市場調查發(fā)現,甲種商品零售單價每降0.1元,甲種商品每天可多銷售100件,商店決定把甲種商品的零售單價下降m(m>0)元,在不考慮其他因素的條件下,求當m為何值時,商店每天銷售甲、乙兩種商品獲取的總利潤為1800元(注:單件利潤=零售單價﹣進貨單價)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數 y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線 x=1,下列結論:①ab<0;b2>4ac;a+b+2c<0;3a+c<0.其中正確的是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2017年上半年撫州市各級各類中小學(含中等職業(yè)學校)開展了萬師訪萬家活動.某縣家訪方式有:A.上門走訪;B.電話訪問;C.網絡訪問(班級微信或QQ群);D.其他.該縣教育局負責人從萬師訪萬家平臺上隨機抽取本縣一部分老師的家訪情況,繪制了如圖所示兩幅尚不完整的統(tǒng)計圖.

根據圖中提供的信息,解答下列問題:

1)這次被抽查的家訪老師共有多少人?扇形統(tǒng)計圖中,“A”所對應的圓心角的度數為多少?

2)請補全條形統(tǒng)計圖.

3)已知該縣共有3500位老師參與了這次萬師訪萬家活動,請估計該縣共有多少位老師采用的是上門走訪的方式進行家訪的?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】學校需要購買一批籃球和足球,已知一個籃球比一個足球的進價高30元,買兩個籃球和三個足球一共需要510元.

(1)求籃球和足球的單價;

(2)根據實際需要,學校決定購買籃球和足球共100個,其中籃球購買的數量不少于足球數量的,學?捎糜谫徺I這批籃球和足球的資金最多為10500元.請問有幾種購買方案?

(3)若購買籃球x個,學校購買這批籃球和足球的總費用為y(元),在(2)的條件下,求哪種方案能使y最小,并求出y的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知線段AC,點DAC的中點,B是直線AC上的一點,且 BCABBD1,則AC_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,若拋物線L1的頂點A在拋物線L2上,拋物線L2的頂點B在拋物線L1(A與點B不重合),我們把這樣的兩拋物線L1、L2稱為伴隨拋物線,可見一條拋物線的伴隨拋物線可以有多條.

(1)拋物線L1y=-x24x3與拋物線L2伴隨拋物線,且拋物線L2的頂點B的橫坐標為4,求拋物線L2的表達式;

(2)若拋物線ya1(xm)2n的任意一條伴隨拋物線的表達式為ya2(xh)2k,請寫出a1a2的關系式,并說明理由;

(3)在圖②中,已知拋物線L1ymx22mx3m(m>0)y軸相交于點C,它的一條伴隨拋物線L2,拋物線L2y軸相交于點D,若CD4m,求拋物線L2的對稱軸.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市為了解九年級學生的身體素質測試情況,隨機抽取了該市九年級部分學生的身體素質測試成績作為樣本,按A(優(yōu)秀),B(良好),C(合格),D(不合格)四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制了下面兩幅不完整的統(tǒng)計圖,請根據圖中提供的信息,解答下列問題:

(1)此次共調查了多少名學生?

(2)將條形統(tǒng)計圖補充完整,并計算扇形統(tǒng)計圖中“A”部分所對應的圓心角的度數.

(3)該市九年級共有8000名學生參加了身體素質測試,估計測試成績在良好以上(含良好)的人數.

查看答案和解析>>

同步練習冊答案