【題目】二次函數(shù) y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線 x=1,下列結論:①ab<0;b2>4ac;a+b+2c<0;3a+c<0.其中正確的是_____

【答案】①②③

【解析】分析:由拋物線開口方向得到a>0,由拋物線與y軸的交點位置得到c<0,則可對①進行判斷;利用判別式的意義和拋物線與x軸有2個交點可對②進行判斷;利用x=1時,y<0c<0可對③進行判斷;利用拋物線的對稱軸方程得到b=-2a,加上x=-1時,y>0,即a-b+c>0,則可對④進行判斷.

詳解:∵拋物線開口向上,

a>0,

∵拋物線與y軸的交點在x軸下方,

c<0,

ab<0,所以①正確;

∵拋物線與x軸有2個交點,

=b24ac>0,所以②正確;

x=1時,y<0,

a+b+c<0,

c<0,

a+b+2c<0,所以③正確;

∵拋物線的對稱軸為直線x==1,

b=2a,

x=1時,y>0,即ab+c>0,

a+2a+c>0,所以④錯誤.

故答案為:①②③.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,△ABC內(nèi)接于⊙O,AC是直徑,點D是AC延長線上一點,且∠DBC=∠BAC, .

(1) 求證:BD是⊙O的切線;

(2) 求的值;

(3) 如圖2,過點B作BG⊥AC交AC于點F,交⊙O于點G,BC、AG的延長線交于點E,⊙O的半徑為6,求BE的長.

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】節(jié)約用水是我們的美德,水龍頭關閉不嚴會造成滴水,容器內(nèi)盛水與滴水時間的關系用可以顯示水量的容器做如圖的試驗,并根據(jù)試驗數(shù)據(jù)繪制出如圖的函數(shù)圖象,結合圖象解答下列問題.

)容器內(nèi)原有水多少升.

)求之間的函數(shù)關系式,并計算在這種滴水狀態(tài)下一天的滴水量是多少升.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是等腰直角三角形底邊上的高,點的中點,延長,使,連接.

(1)求證:四邊形是矩形;

(2)填空:

①若,,則四邊形的面積=_____

②若,則____時,四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以線段AC為對角線的四邊形ABCD(它的四個頂點A,B,C,D按順時針方向排列),已知ABBCCD,ABC100°CAD40°,則∠BCD的度數(shù)為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小亮參加中華詩詞大賽,還剩最后兩題,如果都答對,就可順利通關.其中第一道單選題有4個選項,第二道單選題有3個選項.小亮這兩道題都不會,不過還有一個求助沒有使用(使用求助可以讓主持人去掉其中一題的一個錯誤選項).

1)如果小亮第一題使用求助,那么他答對第一道題的概率是__;

2)他的親友團建議:最后一題使用求助,從提高通關的可能性的角度看,你同意親友團的觀點嗎?試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AD平分∠BACBCD,且BDCDDEAB于點E,DFAC于點F

1)求證:ABAC

2)若DC4,∠DAC30°,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【閱讀學習】 劉老師提出這樣一個問題:已知α為銳角,且tanα=,求sin2α的值.

小娟是這樣解決的:

如圖1,在⊙O中,AB是直徑,點C⊙O上,∠BAC=α,所以∠ACB=90°tanα==

易得∠BOC=2α.設BC=x,則AC=3x,則AB=x.作CD⊥ABD,求出CD= (用含x的式子表示),可求得sin2α==

【問題解決】

已知,如圖2,點MN、P為圓O上的三點,且∠P=β,tanβ =,求sin2β的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,C是⊙O上的一點,連結AC并延長至D,使CD=AC,連結BD,作CEBD,垂足為E。

1)線段ABDB的大小關系為 ,請證明你的結論;

2)判斷CE與⊥⊙O的位置關系,并證明;

3)當CED與四邊形ACEB的面積比是1:7時,試判斷ABD的形狀,并證明。

查看答案和解析>>

同步練習冊答案