【題目】(1)解不等式組,并求出所有整數(shù)解的和.
(2)分解因式:
(3)解方程:.
(4)先化簡,再求值:,其中.
【答案】(1);;(2);(3)無解;(4);
【解析】
(1)分別求出不等式組中兩不等式的解集,得到不等式組的解集,進(jìn)而求出整數(shù)解的和即可;
(2)先計算完全平方式,然后合并同類項,再進(jìn)行因式分解即可;
(3)先去分母,去括號,然后移項,合并同類項,系數(shù)化為1,即可得到答案;
(4)先把分式進(jìn)行化簡,然后把x的值代入計算,即可得到答案.
解:(1)解不等式組,
解不等式①,得:,
解不等式②,得:,
∴不等式組的解集是:,
∴不等式組的整數(shù)解為:,,,0,1;
∴所有整數(shù)解的和為:;
(2)
=
=
=
=;
(3),
∴,
∴
∴,
∴;
檢驗,把代入分母,則,
∴原分式方程無解;
(4)
=
=
=;
當(dāng)時,
原式=;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC 的頂點坐標(biāo)分別為A(0,-3),B(3,-2),C(2,-4).
(1)在圖中作出△ABC關(guān)于x軸對稱的△A1B1C1.
(2)點C1的坐標(biāo)為: .
(3)△ABC的周長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線 y=ax2+bx+c(a≠0)的頂點坐標(biāo)為 Q(2,﹣1),且與 y 軸交于點 C(0,3), 與 x 軸交于 A、B 兩點(點 A 在點 B 的右側(cè)),點 P 是拋物線上的一動點,從點 C 沿拋物線向 點 A 運動(點 P 與 A 不重合),過點 P 作 PD∥y 軸,交 AC 于點 D.
(1)求該拋物線的函數(shù)關(guān)系式及 A、B 兩點的坐標(biāo);
(2)求點 P 在運動的過程中,線段 PD 的最大值;
(3)若點 P 與點 Q 重合,點 E 在 x 軸上,點 F 在拋物線上,問是否存在以 A,P,E,F 為頂 點的平行四邊形?若存在,直接寫出點 F 的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,∠BAD的平分線交直線BC于點E,交直線DC于點F.
(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(如圖2),直接寫出∠BDG的度數(shù);
(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的小正方形網(wǎng)格中,點A、B、C、D都在這些小正方形的頂點上,AB、CD相交于點O,則tan∠AOD=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校教學(xué)樓AB后方有一斜坡,已知斜坡CD的長為12米,坡角α為60°,根據(jù)有關(guān)部門的規(guī)定,∠α≤39°時,才能避免滑坡危險,學(xué)校為了消除安全隱患,決定對斜坡CD進(jìn)行改造,在保持坡腳C不動的情況下,學(xué)校至少要把坡頂D向后水平移動多少米才能保證教學(xué)樓的安全?(結(jié)果取整數(shù))
(參考數(shù)據(jù):sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于點E.在△ABC外有一點F,使FA⊥AE,F(xiàn)C⊥BC.
(1)求證:BE=CF;
(2)在AB上取一點M,使BM=2DE,連接MC,交AD于點N,連接ME.求證:①ME⊥BC;②DE=DN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司市場營銷部的營銷員有部分收入按照業(yè)務(wù)量或銷售額提成,即多賣多得.營銷員的月提成收入(元)與其每月的銷售量(萬件)成一次函數(shù)關(guān)系,其圖象如圖所示.根據(jù)圖象提供的信息,解答下列問題:
(1)求出(元)與(萬件)(其中)之間的函數(shù)關(guān)系式;
(2)已知該公司營銷員李平12月份的銷售量為1.2萬件,求李平12月份的提成收入.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com