【題目】如圖,已知菱形ABCD,點(diǎn)EAB的中點(diǎn),AFBC于點(diǎn)F,聯(lián)結(jié)EF、ED、DFDEAF于點(diǎn)G,且AE2EGED

(1)求證:DEEF

(2)求證:BC22DFBF

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.

【解析】

1)根據(jù)直角三角形的性質(zhì)得到AE=FE,根據(jù)相似三角形的性質(zhì)得到∠EAG=ADG,求得∠DAG=FEG,根據(jù)菱形的性質(zhì)得到ADBC,求得∠DAG=AFB=90°,于是得到結(jié)論;

2)由AE=EFAE2=EGED,得到FE2=EGED,推出△FEG∽△DEF,根據(jù)相似三角形的性質(zhì)得到∠EFG=EDF,根據(jù)相似三角形的判定和性質(zhì)即可得到結(jié)論.

(1)AFBC于點(diǎn)F,

∴∠AFB90°

∵點(diǎn)EAB的中點(diǎn),

AEFE

∴∠EAF=∠AFE,

AE2EGED,

,

∵∠AEG=∠DEA,

∴△AEG∽△DEA

∴∠EAG=∠ADG,

∵∠AGD=∠FGE,

∴∠DAG=∠FEG

∵四邊形ABCD 是菱形,

ADBC,

∴∠DAG=∠AFB90°,

∴∠FEG90°

DEEF;

(2)AEEFAE2EGED,

FE2EGED,

,

∵∠FEG=∠DEF,

∴△FEG∽△DEF

∴∠EFG=∠EDF,

∴∠BAF=∠EDF

∵∠DEF=∠AFB90°,

∴△ABF∽△DFE,

∵四邊形ACBD是菱形,

ABBC

∵∠AFB90°,

∵點(diǎn)EAB的中點(diǎn),

FEABBC,

BC22DFBF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是△ABC的外接圓,點(diǎn)OBC邊上,∠BAC的平分線交O于點(diǎn)D,連接BDCD,過(guò)點(diǎn)DBC的平行線與AC的延長(zhǎng)線相交于點(diǎn)P

1)求證:PDO的切線;

2)求證:ABCPBDCD;

3)當(dāng)AB5cm,AC12cm時(shí),求線段PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】春節(jié)前夕,某超市購(gòu)進(jìn)某種品牌禮品,每盒進(jìn)價(jià)是40元,超市規(guī)定每盒售價(jià)不得少于45元,設(shè)每盒售價(jià)為x(),每天的銷(xiāo)售量y()yx成一次的函數(shù)關(guān)系,經(jīng)過(guò)市場(chǎng)調(diào)查獲得部分?jǐn)?shù)據(jù)如下表:

每盒售價(jià)為x()

45

50

55

每天的銷(xiāo)售量y()

450

400

350

(1)試求出yx之間的函數(shù)關(guān)系式;

(2)當(dāng)每盒售價(jià)定為多少元時(shí),每天銷(xiāo)售的利潤(rùn)P()最大?最大利潤(rùn)是多少?

(3)物價(jià)部門(mén)規(guī)定:這種禮品每盒售價(jià)不得高于60元,如果超市想要每天獲得不低于5250元的利潤(rùn),那么超市每天至少銷(xiāo)售這種禮品多少盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校對(duì)七年級(jí)300名學(xué)生進(jìn)行了教學(xué)質(zhì)量監(jiān)測(cè)(滿分100分),現(xiàn)從中隨機(jī)抽取部分學(xué)生的成績(jī)進(jìn)行整理,并繪制成如圖不完整的統(tǒng)計(jì)表和統(tǒng)計(jì)圖:

注:60分以下為“不及格”,6069分為“及格”,7079分為“良好”,80分及以上為“優(yōu)秀”

請(qǐng)根據(jù)以上信息回答下列問(wèn)題:

1)補(bǔ)全統(tǒng)計(jì)表和統(tǒng)計(jì)圖;

2)若用扇形統(tǒng)計(jì)圖表示統(tǒng)計(jì)結(jié)果,則“良好”所對(duì)應(yīng)扇形的圓心角為多少度?

3)請(qǐng)估計(jì)該校七年級(jí)本次監(jiān)測(cè)成績(jī)?yōu)?/span>70分及以上的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖,則下列結(jié)論錯(cuò)誤的是( 。

A. 4a+2b+c0B. abc0C. bacD. 3b2c

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面所示各圖是在同一直角坐標(biāo)系內(nèi),二次函數(shù)y+a+cx+c與一次函數(shù)yax+c的大致圖象.正確的(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題提出:

n個(gè)環(huán)環(huán)相扣的圓環(huán)形成一串線型鏈條,當(dāng)只斷開(kāi)其中的kkn)個(gè)環(huán),要求第一次取走一個(gè)環(huán),以后每次都只能比前一次多得一個(gè)環(huán),則最多能得到的環(huán)數(shù)n是多少呢?

問(wèn)題探究:

為了找出nk之間的關(guān)系,我們運(yùn)用一般問(wèn)題特殊化的方法,從特殊到一般,歸納出解決問(wèn)題的方法.

探究一:k=1,即斷開(kāi)鏈條其中的1個(gè)環(huán),最多能得到幾個(gè)環(huán)呢?

當(dāng)n=1,2,3時(shí),斷開(kāi)任何一個(gè)環(huán),都能滿足要求,分次取走;

當(dāng)n=4時(shí),斷開(kāi)第二個(gè)環(huán),如圖①,第一次取走1環(huán);第二次退回1環(huán)換取2環(huán),得2個(gè)環(huán);第三次再取回1環(huán),得3個(gè)環(huán);第四次再取另1環(huán),得4個(gè)環(huán),按要求分4次取走.

當(dāng)n=5,6,7時(shí),如圖②,圖③,圖④方式斷開(kāi),可以用類(lèi)似上面的方法,按要求分5,6,7次取走.

當(dāng)n=8時(shí),如圖⑤,無(wú)論斷開(kāi)哪個(gè)環(huán),都不可能按要求分次取走.

所以,當(dāng)斷開(kāi)1個(gè)環(huán)時(shí),從得到更多環(huán)數(shù)的角度考慮,把鏈條分成3部分,分別是1環(huán)、2環(huán)和4環(huán),最多能得到7個(gè)環(huán).

即當(dāng)k=1時(shí),最多能得到的環(huán)數(shù)n=1+2+4=1+2×3=1+2×22-1=7.

探究二:k=2,即斷開(kāi)鏈條其中的2個(gè)環(huán),最多能得到幾個(gè)環(huán)呢?

從得到更多環(huán)數(shù)的角度考慮,按圖⑥方式斷開(kāi),把鏈條分成5部分,按照類(lèi)似探究一的方法,按要求分1,2,…23次取走.

所以,當(dāng)斷開(kāi)2個(gè)環(huán)時(shí),把鏈條分成5部分,分別是1環(huán)、1環(huán)、3環(huán)、6環(huán)、12環(huán),最多能得到23個(gè)環(huán).

即當(dāng)k=2時(shí),最多能得到的環(huán)數(shù)n=1+1+3+6+12=2+3×7=2+3×23-1=23.

探究三:k=3,即斷開(kāi)鏈條其中的3個(gè)環(huán),最多能得到幾個(gè)環(huán)呢?

從得到更多環(huán)數(shù)的角度考慮,按圖⑦方式斷開(kāi),把鏈條分成7部分,按照類(lèi)似前面探究的方法,按要求分1,2,…63次取走.

所以,當(dāng)斷開(kāi)3個(gè)環(huán)時(shí),從得到更多環(huán)數(shù)的角度考慮,把鏈條分成7部分,分別是1環(huán)、1環(huán)、1環(huán)、4環(huán)、8環(huán)、16環(huán)、32環(huán),最多能得到63個(gè)環(huán).

即當(dāng)k=3時(shí),最多能得到的環(huán)數(shù)n=1+1+1+4+8+16+32=3+4×15=3+4×24-1=63.

探究四:k=4,即斷開(kāi)鏈條其中的4個(gè)環(huán),最多能得到幾個(gè)環(huán)呢?

按照類(lèi)似前面探究的方法,當(dāng)斷開(kāi)4個(gè)環(huán)時(shí),從得到更多環(huán)數(shù)的角度考慮,把鏈條分成 部分,分別為 ,最多能得到的環(huán)數(shù)n= .請(qǐng)畫(huà)出如圖⑥的示意圖.

模型建立:

n個(gè)環(huán)環(huán)相扣的圓環(huán)形成一串線型鏈條,斷開(kāi)其中的kkn)個(gè)環(huán),從得到更多環(huán)數(shù)的角度考慮,把鏈條分成 部分,

分別是:1、11……1、k+1、 ……、 ,最多能得到的環(huán)數(shù)n =

實(shí)際應(yīng)用:

一天一位財(cái)主對(duì)雇工說(shuō):你給我做兩年的工,我每天付給你一個(gè)銀環(huán).不過(guò),我用一串環(huán)環(huán)相扣的線型銀鏈付你工錢(qián),但你最多只能斷開(kāi)銀鏈中的6個(gè)環(huán).如果你無(wú)法做到每天取走一個(gè)環(huán),那么你就得不到這兩年的工錢(qián),如果銀鏈還有剩余,全部歸你!你愿意嗎?

聰明的你是否可以運(yùn)用本題的方法通過(guò)計(jì)算幫助雇工解決這個(gè)難題,雇工最多能得到總環(huán)數(shù)為多少環(huán)的銀鏈?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A在反比例函數(shù)y(x0)的圖象上,點(diǎn)B在反比例函數(shù)y(x0)的圖象上,ABx軸,BCx軸,垂足為C,連接AC,若△ABC的面積為2,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“驢友”小明分三次從M地出發(fā)沿著不同的線路線,B線,CN在每條線路上行進(jìn)的方式都分為穿越叢林、涉水行走和攀登這三種他涉水行走4小時(shí)的路程與攀登6小時(shí)的路程相等線、C線路程相等,都比A線路程多,A線總時(shí)間等于C線總時(shí)間的,他用了3小時(shí)穿越叢林、2小時(shí)涉水行走和2小時(shí)攀登走完A線,在B線中穿越叢林、涉水行走和攀登所用時(shí)間分別比A線上升了,,,若他用了x小時(shí)穿越叢林、y小時(shí)涉水行走和z小時(shí)攀登走完C線,且xy,z都為正整數(shù),則______

查看答案和解析>>

同步練習(xí)冊(cè)答案