【題目】如圖,已知拋物線 與x軸交于A、B兩點,頂點C的縱坐標為﹣2,現(xiàn)將拋物線向右平移2個單位,得到拋物線 , 則下列結論:① a﹣b+c>0;②b>0;③陰影部分的面積為4;④若c=﹣1,則 . 其中正確的是(寫出所有正確結論的序號)

【答案】①③④
【解析】∵拋物線開口向上,
∴a>0,
又∵對稱軸為x=- >0,
∴b<0,
∵拋物線與y軸的交點位于y軸的負半軸,
∴c<0,
則abc>0,故①正確;
∵x=-1時,y>0,
∴a-b+c>0,故②錯誤;
∵拋物線向右平移了2個單位,
∴平行四邊形的底是2,
∵函數(shù)y=ax2+bx+c的最小值是y=-2,
∴平行四邊形的高是2,
∴陰影部分的面積是:2×2=4,故③正確;
=-2,c=-1,
∴b2=4a,故④正確.
故答案為:①③④.
根據(jù)二次函數(shù)的性質進行計算即可。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘船由A港沿北偏東60°方向航行10kmB港,然后再沿北偏西30°方向航行10kmC港.

1)求A,C兩港之間的距離(結果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);

2)確定C港在A港的什么方向.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,若∠2=40°,則圖中∠1的度數(shù)為( 。

A.115°
B.120°
C.130°
D.140°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)觀察推理:如圖 1,△ABC 中,∠ACB=90°,AC=BC,直線 L 過點C,點 A,B 在直線 L 同側,BD⊥L, AE⊥L,垂足分別為D,E

求證:△AEC≌△CDB

(2)類比探究:如圖 2,RtABC 中,∠ACB=90°,AC=4,將斜邊 AB 繞點 A 逆時針旋轉 90° AB’, 連接B’C,求AB’C 的面積

(3)拓展提升:如圖 3,等邊EBC ,EC=BC=3cm,點 O BC 上且 OC=2cm,動點 P 從點 E 沿射線EC 1cm/s 速度運動,連接 OP,將線段 OP 繞點O 逆時針旋轉 120°得到線段 OF,設點 P 運動的時間為t 秒。

t= 時,OF∥ED

若要使點F 恰好落在射線EB 上,求點P 運動的時間t

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD,OE平分∠BOCOFOE,OPCD,∠ABO40°,則下列結論:BOE70°;OF平分∠BOD;POE=∠BOFPOB2DOF.其中正確結論有_____填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經過A(1,0),C(0,3)兩點,與x軸交于點B.

(1)若直線y=mx+n經過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標;
(3)設點P為拋物線的對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC中,A(1,0),C(0,2),雙曲線y= (0<k<2)的圖象分別交AB,CB于點E,F(xiàn),連接OE,OF,EF,SOEF=2SBEF , 則k值為( )

A.
B.1
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=ax+b與反比例函數(shù)y= ,其中ab<0,a、b為常數(shù),它們在同一坐標系中的圖象可以是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+3與x軸的兩個交點分別為(m,0)和(n,0),則當x=m+n時,y的值為

查看答案和解析>>

同步練習冊答案