【題目】每年5月的第二周為:“職業(yè)教育活動(dòng)周”,今年我市展開了以“弘揚(yáng)工匠精神,打造技能強(qiáng)國”為主題的系列活動(dòng),活動(dòng)期間某職業(yè)中學(xué)組織全校師生并邀請學(xué)生家長和社區(qū)居民參加“職教體驗(yàn)觀摩”活動(dòng),相關(guān)職業(yè)技術(shù)人員進(jìn)行了現(xiàn)場演示,活動(dòng)后該校隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查:“你最感興趣的一種職業(yè)技能是什么?”并對此進(jìn)行了統(tǒng)計(jì),繪制了統(tǒng)計(jì)圖(均不完整).

(1)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

(2)若該校共有3000名學(xué)生,請估計(jì)該校對“工藝設(shè)計(jì)”最感興趣的學(xué)生有多少人?

(3)要從這些被調(diào)查的學(xué)生中隨機(jī)抽取一人進(jìn)行訪談,那么正好抽到對“機(jī)電維修”最感興趣的學(xué)生的概率是   

【答案】(1)補(bǔ)全的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖見解析;

(2)估計(jì)該校對“工業(yè)設(shè)計(jì)”最感興趣的學(xué)生是900人;

(3)正好抽到對“機(jī)電維修”最感興趣的學(xué)生的概率是 0.13

【解析】(1)利用條形和扇形統(tǒng)計(jì)圖相互對應(yīng)求出總體,再分別計(jì)算即可;

(2)由扇形統(tǒng)計(jì)圖可知對“工業(yè)設(shè)計(jì)”最感興趣的學(xué)生有30%,再用整體1800乘以

30%;

(3)由扇形統(tǒng)計(jì)圖可知.

解:(1)補(bǔ)全的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖如圖所示;

(2)3000×30%=900(人).

∴估計(jì)該校對“工業(yè)設(shè)計(jì)”最感興趣的學(xué)生是900人.

(3)要從這些被調(diào)查的學(xué)生中隨機(jī)抽取一人進(jìn)行訪談,那么正好抽到對“機(jī)電維修”

最感興趣的學(xué)生的概率是 0.13(或13%或).

“點(diǎn)睛”本題考查的是條形統(tǒng)計(jì)圖的綜合運(yùn)用.讀懂統(tǒng)計(jì)圖,從統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵,條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為等邊三角形ABC內(nèi)部一點(diǎn),△ABP旋轉(zhuǎn)后能與△CBP'重合.

(1)旋轉(zhuǎn)中心是哪一點(diǎn)?旋轉(zhuǎn)角是多少度?
(2)連接PP',△BPP'是什么三角形?并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知(x-2x+3=1,則x的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若不等式(m-3)x|m2|+2>0是關(guān)于x的一元一次不等式,m的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,小明將一張矩形紙片沿對角線剪開,得到兩張三角形紙片(如圖2),量得他們的斜邊長為10cm,較小銳角為30°,再將這兩張三角紙片擺成如圖3的形狀,但點(diǎn)B、C、F、D在同一條直線上,且點(diǎn)C與點(diǎn)F重合.(在圖3至圖6中統(tǒng)一用F表示)


小明在對這兩張三角形紙片進(jìn)行如下操作時(shí)遇到了三個(gè)問題,請你幫助解決.
(1)將圖3中的△ABF沿BD向右平移到圖4的位置,使點(diǎn)B與點(diǎn)F 重合,請你求出平移的距離;
(2)將圖3中的△ABF繞點(diǎn)F順時(shí)針方向旋轉(zhuǎn)30°到圖5的位置,A1F交DE于點(diǎn)G,請你求出線段FG的長度;
(3)將圖3中的△ABF沿直線AF翻折到圖6的位置,AB1交DE于點(diǎn)H,請說明:AH=DH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC,∠ACB的平分線的交點(diǎn)P恰好在BC邊的高AD上,則△ABC一定是( )

A.直角三角形
B.等邊三角形
C.等腰三角形
D.等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AE上一點(diǎn)(不與點(diǎn)A、E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ,以下四個(gè)結(jié)論:①△ACD≌△BCE;②△CDP≌△CEQ;③PQ∥AE;④∠AOB=60°.一定成立的結(jié)論有(把你認(rèn)為正確結(jié)論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:(3x+2y)2-(3x-2y)2+2(xy)(xy)-2x(x+4y),其中x=1,y=-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,ABCD的對角線AC,BD相交于點(diǎn)O,EF過點(diǎn)O且與AD,BC分別相交于點(diǎn)E,F,則OE=OF.若EF過點(diǎn)O且與平行四邊形的兩對邊的延長線分別相交于點(diǎn)E,F(圖②和圖③),OE與OF還相等嗎?若相等,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案