【題目】(提高題) 如圖所示,△ABC中,∠ACB=90°,∠ABC的平分線BD交AC于點D,CH⊥AB于H,且交BD于點F,DE⊥AB于E,四邊形CDEF是菱形嗎?請說明理由.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點E,F(xiàn)在邊BC上,BE=CF,點D在AF的延長線上,AD=AC.
(1)求證:△ABE≌△ACF;
(2)若∠BAE=30°,則∠ADC= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+2(a≠0)的圖象與x 軸交于A,B 兩點,與y 軸交于點C,已知點 A(-4,0),B(1,0).
(1)求拋物線的解析式;
(2)若點 D(m,n) 是拋物線在第二象限的部分上的一動點,四邊形 的面積為 ,求 關(guān)于 m 的函數(shù)關(guān)系;
(3)若點 E 為拋物線對稱軸上任意一點,當(dāng)以 A,C,E 為頂點的三角形是直角三角形時,請求出滿足條件的所有點 E 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知DE∥AC、DF∥AB,添加下列條件后,不能判斷四邊形DEAF為菱形的是( )
A. AD平分∠BAC
B. AB=AC且BD=CD
C. AD為中線
D. EF⊥AD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠ACB=90°,AD平分∠BAC交BC于D,DE⊥AB于E,BE=AE+AF,連結(jié)BF,判斷△BDF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,長方形紙片ABCD的長AD=9cm,寬AB=3cm,將其折疊,使點D與點B重合.
求:(1)折疊后DE的長;(2)以折痕EF為邊的正方形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,∠CAB=∠DAE,AC=AD,增加下列條件:①AB=AE; ②BC=ED; ③∠C=∠D;④∠B=∠E;⑤∠1=∠2.其中能使△ABC≌△AED的條件有( 。
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點C在AOB的一邊OA上,過點C的直線DE//OB,CF平分ACD,CG CF于C .
(1)若O =40,求ECF的度數(shù);
(2)求證:CG平分OCD;
(3)當(dāng)O為多少度時,CD平分OCF,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com