15.如圖①,在Rt△ABC中,∠C=90°.將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△A′B′C,旋轉(zhuǎn)角為α,且0°<α<180°.在旋轉(zhuǎn)過(guò)程中,點(diǎn)B’可以恰好落在AB的中點(diǎn)處,如圖②.
(1)求∠A的度數(shù);
(2)當(dāng)點(diǎn)C到AA′的距離等于AC的一半時(shí),求α的度數(shù).

分析 (1)利用旋轉(zhuǎn)的性質(zhì)結(jié)合直角三角形的性質(zhì)得出△CBB′是等邊三角形,進(jìn)而得出答案;
(2)利用銳角三角函數(shù)關(guān)系得出sin∠CAD=$\frac{CD}{AC}$=$\frac{1}{2}$,即可得出∠CAD=30°,進(jìn)而得出α的度數(shù).

解答 解:(1)將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△A′B′C,旋轉(zhuǎn)角為α,
∴CB=CB′
∵點(diǎn)B′可以恰好落在AB的中點(diǎn)處,
∴點(diǎn)B′是AB的中點(diǎn).
∵∠ACB=90°,
∴CB′=$\frac{1}{2}$AB=BB′,
∴CB=CB′=BB′,
即△CBB′是等邊三角形.
∴∠B=60°.
∵∠ACB=90°,
∴∠A=30°;

(2)如圖,過(guò)點(diǎn)C作CD⊥AA′于點(diǎn)D,
點(diǎn)C到AA′的距離等于AC的一半,即CD=$\frac{1}{2}$AC.
在Rt△ADC中,∠ADC=90°,sin∠CAD=$\frac{CD}{AC}$=$\frac{1}{2}$,
∴∠CAD=30°,
∵CA=CA′,
∴∠A′=∠CAD=30°.
∴∠ACA′=120°,即α=120°.

點(diǎn)評(píng) 此題主要考查了旋轉(zhuǎn)的性質(zhì)以及等邊三角形的判定等知識(shí),正確掌握直角三角形的性質(zhì)是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.甲乙兩地相距900千米,一列快車(chē)從甲地出發(fā)勻速開(kāi)往乙地,速度為120千米/時(shí);快車(chē)開(kāi)出30分鐘時(shí),一列慢車(chē)從乙地出發(fā)勻速開(kāi)往甲地,速度為90千米/時(shí).設(shè)慢車(chē)行駛的時(shí)間為x小時(shí),快車(chē)到達(dá)乙地后停止行駛,根據(jù)題意解答下列問(wèn)題:
(1)當(dāng)快車(chē)與慢車(chē)相遇時(shí),求慢車(chē)行駛的時(shí)間;
(2)請(qǐng)從下列(A),(B)兩題中任選一題作答.
我選擇:(A).
(A)當(dāng)兩車(chē)之間的距離為315千米時(shí),求快車(chē)所行的路程;
(B)①在慢車(chē)從乙地開(kāi)往甲地的過(guò)程中,求快慢兩車(chē)之間的距離;(用含x的代數(shù)式表示)
②若第二列快車(chē)也從甲地出發(fā)勻速駛往乙地,速度與第一列快車(chē)相同,在第一列快車(chē)與慢車(chē)相遇后30分鐘時(shí),第二列快車(chē)與慢車(chē)相遇,直接寫(xiě)出第二列快車(chē)比第一列快車(chē)晚出發(fā)多少小時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖,下列圖形是一組按照某種規(guī)律擺放而成的圖案,則圖⑧中圓點(diǎn)的個(gè)數(shù)是(  )
A.64B.65C.66D.67

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,∠1=∠2,AB=AD,AC=AE.請(qǐng)將下面說(shuō)明∠C=∠E的過(guò)程和理由補(bǔ)充完整.
證明:∵∠1=∠2(已知 ),
∴∠1+∠BAE=∠2+∠BAE
∴∠1+∠DAC=∠2+∠DAC,
即∠BAC=∠DAE,
在△ABC和△ADE中
$\left\{\begin{array}{l}{AB=AD(已知)}\\{AC=AE(已知)}\end{array}\right.$
∴△ABC≌△ADE(SAS)
∴∠C=∠E(全等三角形對(duì)應(yīng)角相等)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知二次函數(shù)中x和y的部分對(duì)應(yīng)值如下表:
x-10123
y0-3-4-30
(1)求二次函數(shù)的解析式;
(2)如圖,點(diǎn)P是直線(xiàn)BC下方拋物線(xiàn)上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積;
(3)在拋物線(xiàn)上,是否存在一點(diǎn)Q,使△QBC中QC=QB?若存在請(qǐng)直接寫(xiě)出Q點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖1,點(diǎn)O為直線(xiàn)AB上一點(diǎn),過(guò)點(diǎn)O作射線(xiàn)OC,使∠BOC=120°.將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線(xiàn)OB上,另一邊ON在直線(xiàn)AB的下方.

(1)將圖1中的三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC.問(wèn):此時(shí)直線(xiàn)ON是否平分∠AOC?請(qǐng)說(shuō)明理由.
(2)將圖1中的三角板繞點(diǎn)O以每秒6°的速度沿逆時(shí)針?lè)较蛐D(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中,第t秒時(shí),直線(xiàn)ON恰好平分銳角∠AOC,求t的值.
(3)將圖1中的三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部,試探索:在旋轉(zhuǎn)過(guò)程中,∠AOM與∠NOC的差是否發(fā)生變化?若不變,請(qǐng)求出這個(gè)差值;若變化,請(qǐng)求出差的變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

7.計(jì)算:(5x2+15x)÷5x=x+3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,當(dāng)過(guò)O點(diǎn)畫(huà)不重合的2條射線(xiàn)時(shí),共組成1個(gè)角;當(dāng)過(guò)O點(diǎn)畫(huà)不重合的3條射線(xiàn)時(shí),共組成3個(gè)角;當(dāng)過(guò)O
點(diǎn)畫(huà)不重合的4條射線(xiàn)時(shí),共組成6個(gè)角;….根據(jù)以上規(guī)律,當(dāng)過(guò)O點(diǎn)畫(huà)不重合的10條射線(xiàn)時(shí),共組成(  )個(gè)角.
A.28B.36C.45D.55

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某校九年級(jí)教師在講“解直角三角形”一節(jié)時(shí),帶領(lǐng)一個(gè)小組登上學(xué)校教學(xué)樓上的一個(gè)平臺(tái),測(cè)量與學(xué)校毗鄰的一生活小區(qū)的一棟居民樓AB的高度,平臺(tái)C距離地面D高10米,在C處測(cè)得居民樓樓底B的俯角為22.5°,樓頂端A的仰角為60°,測(cè)完后,記錄好數(shù)據(jù),回到教師,將示意圖畫(huà)在黑板上,如圖所示,要求全班學(xué)生按示意圖,求出居民樓AB的高度.(最后結(jié)果精確到0.1)(參考數(shù)據(jù):tan22.5°=$\sqrt{2}$-1,$\sqrt{3}$=1.73,$\sqrt{2}$=1.41)

查看答案和解析>>

同步練習(xí)冊(cè)答案