【題目】小明坐于堤邊垂釣,如圖①,河堤AC的坡角為30°,AC米,釣竿AO的傾斜角是60°,其長為3米,若AO與釣魚線OB的夾角為60°,求浮漂B與河堤下端C之間的距離(如圖②).

【答案】15米.

【解析】

試題延長OABC于點D.先由傾斜角定義及三角形內(nèi)角和定理求出RtACD,米,CD=2AD=3米,再證明△BOD是等邊三角形,得到 米,然后根據(jù)BC=BDCD即可求出浮漂B與河堤下端C之間的距離.

試題解析:延長OABC于點D.

AO的傾斜角是,

RtACD, (),

CD=2AD=3米,

∴△BOD是等邊三角形,

(),

BC=BDCD=4.53=1.5().

答:浮漂B與河堤下端C之間的距離為1.5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉行了文明在我身邊攝影比賽,已知每幅參賽作品成績記為x(60≤x≤100).校方從600幅參賽作品中隨機(jī)抽取了部分步賽作品,統(tǒng)計了它們的成績,并繪制了如下不完整的統(tǒng)計圖表.

文明在我身邊攝影比賽成績統(tǒng)計表

分?jǐn)?shù)段

頻數(shù)

頻率

60≤x<70

 18

 0.36

 70≤x<80

 17

 c

 80≤x<90

 a

 0.24

 90≤x≤100

 b

 0.06

合計

 1

根據(jù)以上信息解答下列問題:

1)統(tǒng)計表中a=  b=  ,c=  

2)補(bǔ)全數(shù)分布直方圖;

3)若80分以上的作品將被組織展評,試估計全校被展評作品數(shù)量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,點為坐標(biāo)原點,直線分別交軸,軸于點,點在第一象限,連接,,四邊形是正方形.

1)如圖1,求直線的解析式;

2)如圖2,點分別在上,點關(guān)于軸的對稱點為點,點上,且,連接,,設(shè)點的橫坐標(biāo)為,的面積為,求之間的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍;

3)如圖3,在(2)的條件下,連接,,,點上,且,點上,連接于點,,且,若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,.動點均從頂點同時出發(fā),點在邊上運動,點在邊上運動.已知點的運動速度是.當(dāng)運動停止時,由,構(gòu)成的三角形恰好與相似.

1)試求點的運動速度;

2)求出此時兩點間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AC、BD相交于O,AE平分∠BAD,交BCE,若∠CAE=15°,求∠BOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,對角線AC,BD相交于點O,DHAB于點H,連接OH,若∠DHO20°,則∠ADC的度數(shù)是(  )

A. 120°B. 130°C. 140°D. 150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子里裝有只有顏色不同的黑、白兩種球共50個,小穎做摸球?qū)嶒,她將盒子里面的球攪勻后從中隨機(jī)摸出一個球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,下表是試驗中的一組統(tǒng)計數(shù)據(jù):

摸到球的次數(shù)

100

200

300

500

800

1000

3000

摸到白球的次數(shù)

65

124

178

302

481

599

1803

摸到白球的概率

0.65

0.62

0.593

0.604

0.601

0.599

0.601

1)請估計當(dāng)很大時,摸到白球的頻率將會接近______;(精確到0.1);

2)假如隨機(jī)摸一次,摸到白球的概率P(白球)______;

3)試估算盒子里白色的球有多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC 中,點 D 是邊 BC 上的點(與 BC 兩點不重合,過點 D DEACDFAB,分別交 AB、AC E、F 兩點,下列說法正確的是(

A. AD 平分BAC,則四邊形 AEDF 是菱形

B. BDCD,則四邊形 AEDF 是菱形

C. AD 垂直平分 BC,則四邊形 AEDF 是矩形

D. ADBC,則四邊形 AEDF 是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以△ABC的三邊為邊在BC的同一側(cè)作等邊△ABP,等邊△ACQ,等邊△BCR

1)四邊形QRPA是平行四邊形嗎?若是,請證明;若不是,請說明理由.

2)當(dāng)△ABC滿足什么條件時,四邊形QRPA是矩形?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案