【題目】如圖,已知中,,,,D是AC邊上一點,且,聯(lián)結(jié)BD,點E、F分別是BC、AC上兩點(點E不與B、C重合),,AE與BD相交于點G.
(1)求證:BD平分;
(2)設(shè),,求與之間的函數(shù)關(guān)系式;
(3)聯(lián)結(jié)FG,當(dāng)是等腰三角形時,求BE的長度.
【答案】(1)證明見解析(2) (3),,
【解析】分析:(1)依據(jù),,即可得到的長,再根據(jù)
,
即可得出的長,依據(jù)即可得到,即平分;
(2)過點作交的延長線于點,依據(jù)平行線分線段成比例定理以及相似三角形的對應(yīng)邊成比例,即可得到 ,進(jìn)而得出 ,即可得到y與x之間的函數(shù)關(guān)系式;
(3)當(dāng)是等腰三角形時,存在三種情況,分別依據(jù)相似三角形的對應(yīng)邊成比例,即可得到關(guān)于x的方程,進(jìn)而得出BE的長.
詳解(1)∵,又∵,
∴ ,
∴ ,
∵,
∴,
又∵是公共角,
∴,
∴,
∴ ,
∴,
∴,
∴,
∴平分;
(2)過點作交的延長線于點,
∵,
∴
∵,,
∴,
∴
∵,
∴,
∴,
∴,
∵, 即
∵,
∴,
又∵,
∴,
∴,
∴;
∴;
(3)當(dāng)△是等腰三角形時,存在以下三種情況:
1° ,易證 ,即,得到
2° ,易證,即,
3° ,易證 ,即
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為支援雅安災(zāi)區(qū),某學(xué)校計劃用“義捐義賣”活動中籌集的部分資金用于購買A,B兩種型號的學(xué)習(xí)用品共1000件,已知A型學(xué)習(xí)用品的單價為20元,B型學(xué)習(xí)用品的單價為30元.
(1)若購買這批學(xué)習(xí)用品用了26000元,則購買A,B兩種學(xué)習(xí)用品各多少件?
(2)若購買這批學(xué)習(xí)用品的錢不超過28000元,則最多購買B型學(xué)習(xí)用品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】第十五屆中國“西博會”將于2014年10月底在成都召開,現(xiàn)有20名志愿者準(zhǔn)備參加某分會場的工作,其中男生8人,女生12人.
(1)若從這20人中隨機(jī)選取一人作為聯(lián)絡(luò)員,求選到女生的概率;
(2)若該分會場的某項工作只在甲、乙兩人中選一人,他們準(zhǔn)備以游戲的方式?jīng)Q定由誰參加,游戲規(guī)則如下:將四張牌面數(shù)字分別為2、3、4、5的撲克牌洗勻后,數(shù)字朝下放于桌面,從中任取2張,若牌面數(shù)字之和為偶數(shù),則甲參加,否則乙參加.試問這個游戲公平嗎?請用樹狀圖或列表法說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點E,交CB的延長線于點F,連接AF,BE.
(1)求證:△AGE≌△BGF;
(2)試判斷四邊形AFBE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,于點.
(1)如圖1,點,分別在,上,且,當(dāng),時,求線段的長;
(2)如圖2,點,分別在,上,且,求證:;
(3)如圖3,點在的延長線上,點在上,且,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為6的正三角形紙片ABC按如下順序進(jìn)行兩次折疊,展開后,得折痕AD、BE.(如圖①),點O為其交點.如圖②,若P、N分別為BE、BC上的動點.如圖③,若點Q在線段BO上,BQ=1,則QN+NP+PD的最小值=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E為矩形ABCD的邊AB上一點,將矩形沿CE折疊,使點B恰好落在ED上的點F處,若BE=1,BC=3,則CD的長為( 。
A. 6 B. 5 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰△ABC中,∠B=90°,AM是△ABC的角平分線,過點M作MN⊥AC于點N,∠EMF=135°.將∠EMF繞點M旋轉(zhuǎn),使∠EMF的兩邊交直線AB于點E,交直線AC于點F,請解答下列問題:
(1)當(dāng)∠EMF繞點M旋轉(zhuǎn)到如圖①的位置時,求證:BE+CF=BM;
(2)當(dāng)∠EMF繞點M旋轉(zhuǎn)到如圖②,圖③的位置時,請分別寫出線段BE,CF,BM之間的數(shù)量關(guān)系,不需要證明;
(3)在(1)和(2)的條件下,tan∠BEM=,AN=+1,則BM= ,CF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示,(每個小方格都是邊長為1個單位長度的正方形).
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)將△ABC繞著點A順時針旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后得到的△A2B2C2,并直接寫出點B2,C2的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com