【題目】如圖,在扇形OAB中,∠AOB=90°,半徑OA=2,將扇形OAB沿過(guò)點(diǎn)B的直線折疊,使點(diǎn)O恰好落在弧AB上的點(diǎn)D處,折痕為BC,求圖中陰影部分的面積.
【答案】
【解析】
根據(jù)題意連接OD,由折疊的性質(zhì),可得CD=CO,BD=BO,∠DBC=∠OBC,則可得△OBD是等邊三角形,繼而求得OC的長(zhǎng),即可求得△OBC與△BCD的面積,又在扇形OAB中,∠AOB=90°,半徑OA=2,即可求得扇形OAB的面積,繼而求得陰影部分面積.
解:連接OD.
根據(jù)折疊的性質(zhì),CD=CO,BD=BO,∠DBC=∠OBC,
∴OB=OD=BD,
即△OBD是等邊三角形
∴∠DBO=60°,
∴∠CBO=∠DBO=30°,
∵∠AOB=90°,
∴OC=OBtan∠CBO=2×,
∴S△BDC=S△OBC=×OB×OC=×2×,
S扇形AOB==π,
∴陰影部分的面積為:S扇形AOB﹣S△BDC﹣S△OBC=π﹣=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)P、D分別在邊BC、AC上,PA⊥AB,垂足為點(diǎn)A,DP⊥BC,垂足為點(diǎn)P,.
(1)求證:∠APD=∠C;
(2)如果AB=3,DC=2,求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,平面直角坐標(biāo)系中,直線y=-x+6交x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)C為OB上一點(diǎn),連接AC,且;
(1)求C點(diǎn)坐標(biāo);
(2)D為OC上一點(diǎn),連接AD并延長(zhǎng)至點(diǎn)E,連接OE、CE,取AE中點(diǎn)F,連接BF、OF,當(dāng)F在第一象限時(shí),求的值;
(3)在(2)的條件下,將射線AC延AE翻折交OE于點(diǎn)P,連接BP,過(guò)O作OH⊥AE于H,若AD=4FH,,求直線PB的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)的變換點(diǎn)的坐標(biāo)定義如下:當(dāng)時(shí),點(diǎn)的坐標(biāo)為;當(dāng)時(shí),點(diǎn)的坐標(biāo)為.
(1)點(diǎn)的變換點(diǎn)的坐標(biāo)是_________;點(diǎn)的變換點(diǎn)為,連接,,則__________;
(2)若點(diǎn)是函數(shù)圖象上的一點(diǎn),點(diǎn)的變換點(diǎn)為,連接,求線段長(zhǎng)的取值范圍;
(3)已知拋物線與軸交于點(diǎn),(點(diǎn)在點(diǎn)的左側(cè)),頂點(diǎn)為.點(diǎn)在拋物線上,點(diǎn)的變換點(diǎn)為.若點(diǎn)恰好在拋物線的對(duì)稱軸上,且四邊形是菱形,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是角平分錢,點(diǎn)E在AC上,且∠EAD=∠ADE.
(1)求證:△DCE∽△BCA;
(2)若AB=3,AC=4.求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A1的坐標(biāo)為(2,0),過(guò)點(diǎn)A1作x軸的垂線交過(guò)原點(diǎn)與x軸夾角為60°的直線l于點(diǎn)B1,以原點(diǎn)O為圓心,OB1的長(zhǎng)為半徑畫弧交x軸正半軸于點(diǎn)A2;再過(guò)點(diǎn)A2作x軸的垂線交直線l于點(diǎn)B2,以原點(diǎn)O為圓心,以OB2的長(zhǎng)為半徑畫弧交x軸正半軸于點(diǎn)A3按此做法進(jìn)行下去,則點(diǎn)B2019的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查學(xué)生對(duì)垃圾分類及投放知識(shí)的了解情況,從甲、乙兩校各隨機(jī)抽取40名學(xué)生進(jìn)行了相關(guān)知識(shí)測(cè)試,獲得了他們的成績(jī)(百分制),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行了整理、描述和分析.下面給出了部分信息.
a.甲、乙兩校40名學(xué)生成績(jī)的頻數(shù)分布統(tǒng)計(jì)表如下:
成績(jī)x 學(xué)校 | |||||
甲 | 4 | 11 | 13 | 10 | 2 |
乙 | 6 | 3 | 15 | 14 | 2 |
(說(shuō)明:成績(jī)80分及以上為優(yōu)秀,70~79分為良好,60~69分為合格,60分以下為不合格)
b.甲校成績(jī)?cè)?/span>這一組的是:
70 70 70 71 72 73 73 73 74 75 76 77 78
c.甲、乙兩校成績(jī)的平均分、中位數(shù)、眾數(shù)如下:
學(xué)校 | 平均分 | 中位數(shù) | 眾數(shù) |
甲 | 74.2 | n | 85 |
乙 | 73.5 | 76 | 84 |
根據(jù)以上信息,回答下列問(wèn)題:
(1)寫出表中n的值;
(2)在此次測(cè)試中,某學(xué)生的成績(jī)是74分,在他所屬學(xué)校排在前20名,由表中數(shù)據(jù)可知該學(xué)生是_____________校的學(xué)生(填“甲”或“乙”),理由是__________;
(3)假設(shè)乙校800名學(xué)生都參加此次測(cè)試,估計(jì)成績(jī)優(yōu)秀的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直角三角形的外接圓半徑為6,內(nèi)切圓半徑為2,那么這個(gè)三角形的面積是( 。
A.32B.34C.27D.28
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一圓柱鐵桶內(nèi)底面的點(diǎn)處有一飛蟲,在其上邊沿的點(diǎn)處有一面包殘?jiān),已?/span>是點(diǎn)正下方的桶內(nèi)底面上一點(diǎn),已知劣弧的長(zhǎng)為,鐵桶的底面直徑為,桶高為60cm,則該飛蟲從點(diǎn)到達(dá)的最短路徑是____________cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com