【題目】如圖,在正方形ABCD中,AB=10,點E、F是正方形內(nèi)兩點,AE=FC=6,BE=DF=8,則EF的長為( )
A. B. C. D. 3
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知: ,點……在射線ON上,點……在射線OM上,△、△、△……均為等邊三角形,若,則△的邊長為( )
A. 6 B. 12 C. 32 D. 64
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,A是x軸負半軸上一定點,一動點B從原點出發(fā),沿y軸正半軸運動,以B為直角頂點,作等腰直角三角形△ABC.
(1) 若B點 運動2秒鐘,C點坐標為(2,-2),求A點的坐標;
(2) 如圖,B點從(1)中的位置出發(fā)保持運動速度不變,再運動2秒鐘.E在原B點上,連AE,OD⊥AE,交x軸的平行線DB于D點,求D點坐標
(3) 點B從(2)的位置出發(fā)繼續(xù)運動,如圖AC交y軸于M,MN⊥y軸,且BM=MN,連CN,試問:AB和CN是否有某種確定的位置關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠POQ=30°,點A、B在射線OQ上(點A在點O、B之間),半徑長為2的⊙A與直線OP相切,半徑長為3的⊙B與⊙A相交,那么OB的取值范圍是( 。
A. 5<OB<9 B. 4<OB<9 C. 3<OB<7 D. 2<OB<7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)化簡求值:(a-b)(a+b)+a(2b-a),其中a=,b=-2
(2)已知x2-2x=1,求(x-1)(3x+1)-(x+1)2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知⊙O的直徑AB=2,弦AC與弦BD交于點E.且OD⊥AC,垂足為點F.
(1)如圖1,如果AC=BD,求弦AC的長;
(2)如圖2,如果E為弦BD的中點,求∠ABD的余切值;
(3)聯(lián)結(jié)BC、CD、DA,如果BC是⊙O的內(nèi)接正n邊形的一邊,CD是⊙O的內(nèi)接正(n+4)邊形的一邊,求△ACD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+ b的圖象分別與x軸和y軸交于點A、B(0,-2),與正比例函數(shù)y=x的圖象交于點C(m,2).
(1)求m的值和一次函數(shù)的解析式;
(2)求△AOC的面積;
(3)直接寫出使函數(shù)y =kx +b的值大于函數(shù)y=x的值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,AB邊上有一動點P,連接PD,線段PD繞點P順時針旋轉(zhuǎn)90°后,得到線段PE,且PE交BC于F,連接DF,過點E作EQ⊥AB的延長線于點Q.
(1)求線段PQ的長;
(2)問:點P在何處時,△PFD∽△BFP,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,為銳角,點為直線上一動點,以為直角邊且在的右側(cè)作等腰直角三角形,,.
(1)如果,.
①當點在線段上時,如圖1,線段、的位置關(guān)系為___________,數(shù)量關(guān)系為_____________
②當點在線段的延長線上時,如圖2,①中的結(jié)論是否仍然成立,請說明理由.
(2)如圖3,如果,,點在線段上運動。探究:當多少度時,?小明通過(1)的探究,猜想時,.他想過點做的垂線,與的延長線相交,構(gòu)建圖2的基本圖案,尋找解決此問題的方法。小明的想法對嗎?如不對寫出你的結(jié)論;如對按此方法解決問題并寫出理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com