已知拋物線y=ax2+bx+3(a≠0)經(jīng)過A(3,0),B(4,1)兩點,且與y軸交于點C.
(1)求拋物線y=ax2+bx+3(a≠0)的函數(shù)關(guān)系式及點C的坐標;
(2)如圖(1),連接AB,在題(1)中的拋物線上是否存在點P,使△PAB是以AB為直角邊的直角三角形?若存在,求出點P的坐標;若不存在,請說明理由;
(3)如圖(2),連接AC,E為線段AC上任意一點(不與A、C重合)經(jīng)過A、E、O三點的圓交直線AB于點F,當△OEF的面積取得最小值時,求點E的坐標.
:解:(1)∵拋物線y=ax2+bx+3(a≠0)經(jīng)過A(3,0),B(4,1)兩點,
,
解得:
∴y=x2x+3;
∴點C的坐標為:(0,3);
(2)當△PAB是以AB為直角邊的直角三角形,且∠PAB=90°,
∵A(3,0),B(4,1),
∴AM=BM=1,
∴∠BAM=45°,
∴∠DAO=45°,
∴AO=DO,
∵A點坐標為(3,0),
∴D點的坐標為:(0,3),
∴直線AD解析式為:y=kx+b,將A,D分別代入得:
∴0=3k+b,b=3,
∴k=﹣1,
∴y=﹣x+3,
∴y=x2x+3=﹣x+3,
∴x2﹣3x=0,
解得:x=0或3,
∴y=3或0(不合題意舍去),
∴P點坐標為(0,3),
當△PAB是以AB為直角邊的直角三角形,且∠PBA=90°,
由(1)得,F(xiàn)B=4,∠FBA=45°,
∴∠DBF=45°,∴DF=4,
∴D點坐標為:(0,5),B點坐標為:(4,1),
∴直線AD解析式為:y=kx+b,將B,D分別代入得:
∴1=4k+b,b=5,
∴k=﹣1,
∴y=﹣x+5,
∴y=x2x+3=﹣x+5,
∴x2﹣3x﹣4=0,
解得:x1=﹣1,x2=4,
∴y1=6,y2=1,
∴P點坐標為(﹣1,6),(4,﹣1),
∴點P的坐標為:(﹣1,6),(4,﹣1),(0,3);
(3)作EM⊥BO,
∵當OE∥AB時,△FEO面積最小,
∴∠EOM=45°,
∴MO=EM,
∵E在直線CA上,
∴E點坐標為(x,﹣x+3),
∴x=﹣x+3,
解得:x=,
∴E點坐標為().
解析:
:(1)根據(jù)A(3,0),B(4,1)兩點利用待定系數(shù)法求二次函數(shù)解析式;
(2)從當△PAB是以AB為直角邊的直角三角形,且∠PAB=90°與當△PAB是以AB為直角邊的直角三角形,且∠PBA=90°,分別求出符合要求的答案;
(3)根據(jù)當OE∥AB時,△FEO面積最小,得出OM=ME,求出即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-2,0),B(0,-4),C(2,-4)三點,且精英家教網(wǎng)與x軸的另一個交點為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點D的坐標和對稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2和直線y=kx的交點是P(-1,2),則a=
 
,k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、已知拋物線y=ax2+bx+c的開口向下,頂點坐標為(2,-3),那么該拋物線有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標原點O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為B,且拋物線不經(jīng)過第三象限.
(1)使用a、c表示b;
(2)判斷點B所在象限,并說明理由;
(3)若直線y2=2x+m經(jīng)過點B,且于該拋物線交于另一點C(
ca
,b+8
),求當x≥1時y1的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案