【題目】港珠澳大橋是中國境內一座連接香港、珠海和澳門的橋隧工程,位于中國廣東省伶仃洋區(qū)域內,為珠江三角洲地區(qū)環(huán)線高速公路南環(huán)段,青州航道橋“中國結三地同心”主題的斜拉索塔如圖(1)所示.某數(shù)學興趣小組根據(jù)材料編制了如下數(shù)學問題,請你解答.
如圖(2),BC,DE為主塔AB(主塔AB與橋面AC垂直)上的兩條鋼索,橋面上C、D兩點間的距離為16m,主塔上A、E兩點的距離為18.4m,已知BC與橋面AC的夾角為30°,DE與橋面AC的夾角為38°。求主塔AB的高.(結果精確到1米,參考數(shù)據(jù):sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,≈1.7)
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在矩形 ABCD 中,動點 E 從點 A 出發(fā),沿 AB→BC 方向運動,當點 E 到達點 C 時 停止運動.過點 E 作 FE⊥AE,交 CD 于 F 點,設點 E 運動路程為 x,FC=y,圖②表示 y與 x 的函數(shù)關系的大致圖像,則矩形 ABCD 的面積是( )
A. B. 5 C. 6 D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面內由極點、極軸和極徑組成的坐標系叫做極坐標系.如圖,在平面上取定一點O稱為極點;從點O出發(fā)引一條射線Ox稱為極軸;線段OP的長度稱為極徑.點P的極坐標就可以用線段OP的長度以及從Ox轉動到OP的角度(規(guī)定逆時針方向轉動角度為正)來確定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,則點P關于點O成中心對稱的點Q的極坐標表示不正確的是( )
A. Q(3,240°) B. Q(3,﹣120°) C. Q(3,600°) D. Q(3,﹣500°)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線C1與拋物線C2與x軸有相同的交點M,N(點M在點N的左側),與x軸的交點分別為A,B,且點A的坐標為(0,﹣3),拋物線C2的解析式為y=mx2+4mx﹣12m(m>0).
(1)求M,N兩點的坐標;
(2)在第三象限內的拋物線C1上是否存在一點P,使得△PAM的面積最大,若存在,求出△PAM的面積的最大值;若不存在,說明理由;
(3)設拋物線C2的頂點為點D,順次連接A,D,B,N,若四邊形ADBN是平行四邊形,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形紙片ABCD,AD=4,AB=3,如果點E在邊BC上,將紙片沿AE折疊,使點B落在點F處,聯(lián)結FC,當△EFC是直角三角形時,那么BE的長為( )
A. 1.5B. 3
C. 1.5或3D. 有兩種情況以上
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+5與x軸交于點A(1,0)和點B(5,0),頂點為M.點C在x軸的負半軸上,且AC=AB,點D的坐標為(0,3),直線l經過點C、D.
(1)求拋物線的表達式;
(2)點P是直線l在第三象限上的點,聯(lián)結AP,且線段CP是線段CA、CB的比例中項,
求tan∠CPA的值;
(3)在(2)的條件下,聯(lián)結AM、BM,在直線PM上是否存在點E,使得∠AEM=∠AMB.若存在,求出點E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,PA、PC與⊙O分別相切于點A,C,PC交AB的延長線于點D,DE⊥PO交PO的延長線于點E.
(1)求證:∠EPD=∠EDO;
(2)若PC=3,tan∠PDA=,求OE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,在邊長為4的正方形紙片ABCD中,從邊CD上剪去一個矩形EFGH,且有EF=DH=CE=1cm,FG=2cm,動點P從點A開始沿AD邊向點D以1cm/s的速度運動至點D停止.以AP為邊在AP的下方做正方形AQKP,設點P運動時間為t(s),正方形AQKP和紙片重疊部分的面積為S(cm2),則S與t之間的函數(shù)關系用圖象表示大致是( 。
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com