【題目】如圖,拋物線x軸交于AB兩點,與y軸交于點C,且OA=2,OC=3

(1)求拋物線的解析式.

(2)若點D(22)是拋物線上一點,那么在拋物線的對稱軸上,是否存在一點P,使得△BDP的周長最小,若存在,請求出點P的坐標,若不存在,請說明理由.

注:二次函數(shù)≠0)的對稱軸是直線=.

【答案】12P,

【解析】

解:(1)∵OA=2OC=3,

A(-2,0),C03).

C0,3)代入c=3

A(-2,0)代入得,,

解得b=

∴拋物線的解析式為;

2)如圖:連接AD,與對稱軸相交于P,

由于點A和點B關于對稱軸對稱,則BP+DP=AP+DP,當AP、D共線時BP+DP=AP+DP最小.

設直線AD的解析式為y=kx+b,

A-20),D22)分別代入解析式得, ,解得,,

∴直線AD解析式為y=x+1

∵二次函數(shù)的對稱軸為,

∴當x=時,y=×+1=

P).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,點、點軸上(點在點的左側),點在第一象限,滿足為直角,且恰使∽△,拋物線經過、三點.

1)求線段、的長;

2)求點的坐標及該拋物線的函數(shù)關系式;

3)在軸上是否存在點,使為等腰三角形?若存在,求出所有符合條件的點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰△ABC的頂角∠A=36°,若將其繞點C順時針旋轉36°,得到△,點B′在AB邊上,ACE,連接AA′.有下列結論:①△ABC≌△;②四邊形是平行四邊形;③圖中所有的三角形都是等腰三角形;其中正確的結論是(

A.①②B. C.②③D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC的斜邊BC=4,∠ABC=30°,以ABAC為直徑分別作圓.則這兩圓的公共部分面積為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax2bxc的圖象如圖,則下列敘述正確的是( )

A. abc0 B. 3ac0

C. b24ac≥0 D. 將該函數(shù)圖象向左平移2個單位后所得到拋物線的解析式為yax2c

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,點D是邊BC的中點,聯(lián)結AD.過點CCEAD于點E,聯(lián)結BE

1)求證:BD2DEAD

2)如果∠ABC=∠DCE,求證:BDCEBEDE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)今“微信運動”被越來越多的人關注和喜愛,某興趣小組隨機調查了我市50名教師某日“微信運動”中的步數(shù)情況進行統(tǒng)計整理,繪制了如下的統(tǒng)計圖表(不完整):

步數(shù)

頻數(shù)

頻率

0≤x<4000

8

a

4000≤x<8000

15

0.3

8000≤x<12000

12

b

12000≤x<16000

c

0.2

16000≤x<20000

3

0.06

20000≤x<24000

d

0.04

請根據以上信息,解答下列問題:

(1)寫出a,b,c,d的值并補全頻數(shù)分布直方圖;

(2)本市約有37800名教師,用調查的樣本數(shù)據估計日行走步數(shù)超過12000步(包含12000步)的教師有多少名?

(3)若在50名被調查的教師中,選取日行走步數(shù)超過16000步(包含16000步的兩名教師與大家分享心得,求被選取的兩名教師恰好都在20000步(包含20000步)以上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個交點A的坐標為(﹣1,0),對稱軸為直線x=﹣2.

(1)求拋物線與x軸的另一個交點B的坐標;

(2)點D是拋物線與y軸的交點,點C是拋物線上的另一點.已知以AB為一底邊的梯形ABCD的面積為9.求此拋物線的解析式,并指出頂點E的坐標;

(3)點P是(2)中拋物線對稱軸上一動點,且以1個單位/秒的速度從此拋物線的頂點E向上運動.設點P運動的時間為t秒.

當t為   秒時,PAD的周長最小?當t為   秒時,PAD是以AD為腰的等腰三角形?(結果保留根號)

點P在運動過程中,是否存在一點P,使PAD是以AD為斜邊的直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案