分析 先求出△AFG的面積,然后找出S△CEG=9S△AFG=3,再求出S△AFD=2S△AFC=2×$\frac{1}{3}$=$\frac{2}{3}$,S△DEB=S△AFD=$\frac{2}{3}$,最后用面積差即可.
解答 解:AF∥BC,CG=3,GA=1,
∴$\frac{EG}{FG}=\frac{GA}{CG}=\frac{3}{1}$,
∴FG=$\frac{1}{4}$EF,
∵AF∥BC,
∴$\frac{ED}{FD}=\frac{DB}{AD}$,
∵D是AB的中點(diǎn),
∴AD=BD,
∴ED=FD,
∴FD=$\frac{1}{2}$EF,
∵$\frac{EG}{FG}$=$\frac{3}{1}$,
∴S△AFG=$\frac{1}{3}$S△AEG=$\frac{1}{3}$,
∵AF∥BC,
∴△CEG∽△AFG,
∴$\frac{{S}_{△CEG}}{{S}_{△AFG}}=(\frac{CG}{AG})^{2}=9$,
∴S△CEG=9S△AFG=3,
∵FG=$\frac{1}{4}$EF,F(xiàn)D=$\frac{1}{2}$EF,
∴FD=2FG,
∴DG=FG,
∴S△AFD=2S△AFC=2×$\frac{1}{3}$=$\frac{2}{3}$,
∵△BED≌△AFD,
∴S△DEB=S△AFD=$\frac{2}{3}$,
∴S四邊形BDGC的面積=S△CGE-S△BED
=3-$\frac{2}{3}$
=$\frac{7}{3}$.
點(diǎn)評(píng) 此題是相似三角形的性質(zhì)和判定,主要考查了相似三角形的性質(zhì),面積比等于相似比的平分,等底的兩三角形面積的比等于高的比,解本題的關(guān)鍵是求出△AFG的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 3cm | B. | 6cm | C. | 12cm | D. | 16cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | s=450 | B. | s=600 | C. | s=750 | D. | s=900 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com