【題目】按圖中方式用火柴棒搭正方形
①搭1個(gè)正方形需要 根火柴棒;
②搭2個(gè)正方形需要 根火柴棒,搭3個(gè)正方形需要 根火柴棒;
③搭10個(gè)這樣的正方形需要多少根火柴棒;
④搭100個(gè)這樣的正方形需要多少根火柴棒?
⑤如果用x表示所搭正方形的個(gè)數(shù),那么搭x個(gè)這樣的正方形需要多少根火柴棒?與同伴交流。
⑥根據(jù)你的計(jì)算方法,搭200個(gè)這樣的正方形需要多少根火柴棒?
【答案】① 4 ②7 10 ③ 31 ④301 ⑤3x+1 ⑥ 601
【解析】①有圖可知,搭1個(gè)正方形需要4根火柴棒;
②搭2個(gè)正方形需要4+3=7根火柴棒,搭3個(gè)正方形需要4+2×3=10根火柴棒;
③搭10個(gè)這樣的正方形需要4+9×3=31根火柴棒;
④搭100個(gè)這樣的正方形需要4+99×3=301根火柴棒;
⑤搭x個(gè)這樣的正方形需要4+(x1)×3=1+3x根火柴棒.
⑥把x=200代入3x+1中,即可求解.
①搭1個(gè)正方形需要4根火柴棒;
②搭2個(gè)需要4+3×1=7,搭3個(gè)需要4+3×2=10;
③搭10個(gè)需要4+3×9=31;
④搭100個(gè)需要4+3×99=301;
⑤搭x需要4+3×(x1)=3x+1.
⑥當(dāng)x=200時(shí),3x+1=3×200+1=601,即搭200個(gè)這樣的正方形需要601根火柴棒.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+b的頂點(diǎn)坐標(biāo)為(0,﹣1),且經(jīng)過點(diǎn)A(﹣2,0).
(1)求拋物線的解析式;
(2)若將拋物線y=ax2+b中在x軸下方的圖象沿x軸翻折到x軸上方,x軸上方的圖象保持不變,就得到了函數(shù)y=|ax2+b|圖象上的任意一點(diǎn)P,直線l是經(jīng)過(0,1)且平行與x軸的直線,過點(diǎn)P作直線l的垂線,垂足為D,猜想并探究:PO與PD的差是否為定值?如果是,請求出此定值;如果不是,請說明理由. (注:在解題過程中,如果你覺得有困難,可以閱讀下面的材料)
附閱讀材料:
① 在平面直角坐標(biāo)系中,若A、B兩點(diǎn)的坐標(biāo)分別為A(x1 , y1),B(x2 , y2),則A,B兩點(diǎn)間的距離為|AB|= ,這個(gè)公式叫兩點(diǎn)間距離公式.
例如:已知A,B兩點(diǎn)的坐標(biāo)分別為(﹣1,2),(2,﹣2),則A,B兩點(diǎn)間的距離為|AB|= =5.
② 因式分解:x4+2x2y2+y4=(x2+y2)2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)水池深3m,池中水深1m,現(xiàn)在要把水池中的水注滿,每注水1h,池中的水深增加0.4m.
(1)寫出池中的水深y(m)與注水時(shí)間x(h)之間的函數(shù)關(guān)系式.
(2)求自變量的取值范圍.
(3)畫出這個(gè)函數(shù)的圖像.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列解題過程的空白處填上適當(dāng)?shù)膬?nèi)容(推理的理由或數(shù)學(xué)表達(dá)式)
如圖,在△ABC中,已知∠ADE=∠B,∠1=∠2,FG⊥AB于點(diǎn)G.
求證CD⊥AB.
證明:∵∠ADE=∠B(已知),
∴ ( ),
∵ DE∥BC(已證),
∴ ( ),
又∵∠1=∠2(已知),
∴ ( ),
∴CD∥FG( ),
∴ (兩直線平行同位角相等),
∵ FG⊥AB(已知),
∴∠FGB=90°(垂直的定義).
即∠CDB=∠FGB=90°,
∴CD⊥AB. (垂直的定義).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【閱讀材料】
小明在學(xué)習(xí)二次根式時(shí),發(fā)現(xiàn)一些含根號的式子可以化成另一式子的平方.如:
5+2=(2+3)+2=()2+()2+2=()2;
8+2=(3+5)+2=()2+()2+2=()2.
【類比歸納】
(1)請你仿照小明的方法將9+2化成一個(gè)式子的平方;
(2)將下列等式補(bǔ)充完整:a+b+2=( )2(a≥0,b≥0),并證明這個(gè)等式;
【變式探究】
(3)若a+2=()2,且a,m,n均為正整數(shù),則a= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,點(diǎn)D,E,F分別是AB,BC,CA上的點(diǎn).
(1)若AD=BE=CF,問△DEF是等邊三角形嗎?試證明你的結(jié)論;
(2)若△DEF是等邊三角形,問AD=BE=CF成立嗎?試證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列代數(shù)式:
(1); (2)ab÷c2; (3) ; (4) ; (5)2x(a+b); (6)ab·2.
符合代數(shù)式書寫要求的有幾個(gè)?答:( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B、C、D是四個(gè)城市,現(xiàn)在要建造一個(gè)火力發(fā)電廠M,為了節(jié)省資金,應(yīng)使輸電線路最短,因此電廠到這四個(gè)城市距離之和最小,請你確定M的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料: 在數(shù)學(xué)課上,老師提出如下問題:
小敏的作法如下:
老師說:“小敏的作法正確.”依其作法,先得出ABCD,再得出矩形ABCD,請回答:以上兩條結(jié)論的依據(jù)是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com