【題目】如圖,在中,.點(diǎn)從點(diǎn)出發(fā),沿方向以每秒個(gè)單位長度的速度向終點(diǎn)運(yùn)動(dòng)(點(diǎn)不與重合),過點(diǎn)交折線于點(diǎn)為邊問下作正方形點(diǎn)落在邊上設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為(秒).

1)直接用含的代數(shù)式表示線段的長.

2)當(dāng)點(diǎn)落在邊上時(shí),求的值.

3)當(dāng)正方形重疊部分圖形為四邊形時(shí),設(shè)四邊形的面積為(平方單位),求之間的函數(shù)關(guān)系式.

4)點(diǎn)為邊的中點(diǎn),直接寫出直線將正方形分成的兩部分圖形的面積比為時(shí)的值.

【答案】(1)當(dāng)時(shí),.當(dāng)時(shí),;(2;(3)當(dāng)時(shí).;當(dāng)時(shí).;(4

【解析】

1)需分點(diǎn)QAB上和BC上兩種情況,結(jié)合銳角三角函數(shù)即可求得對(duì)應(yīng)的AP的長;

2)表示出AP,PNNC,用AB=AP+PN+NC,即可求出;

3)由(2)知,需分為兩部分討論;

4)由PF分正方形面積為1:2的兩部分,得出比例關(guān)系,使用平行線分線段成比例,計(jì)算結(jié)果.

1)作,垂足為D

,BC=4,AB=3

AC=5

點(diǎn)QAB上時(shí),如圖所示

中,BC=4,AB=3,,

中,,則

當(dāng)點(diǎn)QBC上時(shí),如圖所示:

中,BC=4,AB=3,

中,,則

綜上:當(dāng)時(shí),.當(dāng)時(shí),

(不寫取值范圍不扣分)

2)當(dāng)點(diǎn)落在邊上時(shí),如圖所示

由(1)知,,

中,

AB=AP+PN+NC=解得

3)由(2)知,正方形重疊部分圖形為四邊形時(shí)

的取值范圍是:

當(dāng)時(shí).此時(shí)重合部分為正方形PQMN整體,則

當(dāng)時(shí).如圖所示:

中,

4)當(dāng)時(shí),如圖所示:

此時(shí)

直線PF將正方形PQMN分成1:2的兩部分,即

中,,

,垂足為H

,解得

當(dāng)時(shí),如圖所示:

同上可知:

,得

,即

FBC中點(diǎn)

,解得

綜上:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,點(diǎn)上,連接,上一點(diǎn),

(1)求證:;

(2),,,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,點(diǎn)EAD邊上,連接BECE,EB平分∠AEC .

(1)如圖1,判斷△BCE的形狀,并說明理由;

(2)如圖2,若∠A=90°,BC=5,AE=1,求線段BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),點(diǎn)軸上的一個(gè)動(dòng)點(diǎn),當(dāng)是等腰三角形時(shí),值個(gè)數(shù)是( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在新冠狀病毒的影響下,某學(xué)校積極響應(yīng)政府號(hào)召,開展了“停課不停學(xué)”網(wǎng)上授課工作,為了網(wǎng)上授課工作順利開展和取得良好成效,該校在授課第一周和授課第二周分別隨機(jī)抽取部分學(xué)生進(jìn)行“網(wǎng)上授課教學(xué)效果反饋網(wǎng)上調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,調(diào)查顯示:兩次調(diào)查反饋教學(xué)效果為“較差”人數(shù)相等,第二周反饋教學(xué)效果為“很好”人數(shù)比例比第一周多,請(qǐng)根據(jù)調(diào)查顯示和統(tǒng)計(jì)圖中的信息解決下列問題:

在圖1中,表示“較好”的扇形圓心角的度數(shù)為_ 度,并把圖2條形統(tǒng)計(jì)圖補(bǔ)充完整;

若把調(diào)查反饋教學(xué)效果“很好”和“較好”作為網(wǎng)上授課成效良好的標(biāo)準(zhǔn),該校大約有名學(xué)生,請(qǐng)估計(jì)授課第二周學(xué)校網(wǎng)上授課成效良好的學(xué)生人數(shù);

有一位家長認(rèn)為,兩次調(diào)查反饋授課效果為較差人數(shù)相等,因此學(xué)校在一周后調(diào)整的措施并沒有提高網(wǎng)上授課效果,這位家長分析數(shù)據(jù)的方法合理嗎?請(qǐng)結(jié)合統(tǒng)計(jì)圖,對(duì)這位家長分析數(shù)據(jù)的方法及學(xué)校在一周后調(diào)整措施對(duì)網(wǎng)上授課效果的影響談?wù)勀愕目捶ǎ?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸交于A,B兩點(diǎn),頂點(diǎn)P(m,n).給出下列結(jié)論:①2a+c<0;②若(﹣,y1),(﹣,y2),(,y3)在拋物線上,則y1>y2>y3;③關(guān)于x的方程ax2+bx+k=0有實(shí)數(shù)解,則k>c﹣n;④當(dāng)n=﹣時(shí),△ABP為等腰直角三角形.其中正確結(jié)論是______(填寫序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為加快5G網(wǎng)絡(luò)建設(shè),某通信公司在一個(gè)坡度i12.4的山坡AB上建了一座信號(hào)塔CD,信號(hào)塔底端C到山腳A的距離AC13米,在距山腳A水平距離18米的E處,有一高度為10米的建筑物EF,在建筑物頂端F處測(cè)得信號(hào)塔頂端D的仰角為37°(信號(hào)塔及山坡的剖面和建筑物的剖面在同一平面上),則信號(hào)塔CD的高度約是( 。▍⒖紨(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75

A.22.5B.27.5C.32.5D.45.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了了解九年級(jí)學(xué)生上學(xué)期間平均每天的睡眠情況,現(xiàn)從全校名九年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生,調(diào)查了這些同學(xué)上學(xué)期間平均每天的睡眠時(shí)間(單位:小時(shí)),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計(jì)表,繪制成扇形統(tǒng)計(jì)圖,如圖所示.請(qǐng)你根據(jù)圖表提供的信息解答下列問題:

平均每天睡眠時(shí)間分組統(tǒng)計(jì)表

組別序號(hào)

睡眠時(shí)間(小時(shí))

人數(shù)(頻數(shù))

平均每天睡眠時(shí)間扇形統(tǒng)計(jì)表

1_______,_______,_______為百分號(hào)前的數(shù)字);

2)隨機(jī)抽取的這部分學(xué)生平均每天睡眠時(shí)間的中位數(shù)落在_______組(填組別序號(hào));

3)估計(jì)全校名九年級(jí)學(xué)生中平均每天睡眠時(shí)間不低于小時(shí)的學(xué)生有_______名;

4)若所抽查的睡眠時(shí)間(小時(shí))的名學(xué)生,其中名男生和名女生,現(xiàn)從這名學(xué)生中隨機(jī)選取名學(xué)生參加個(gè)別訪談,請(qǐng)用列表或畫樹狀圖的方法求選取的名學(xué)生恰為女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知拋物線ybxcx軸交于點(diǎn)A、,與y軸交于點(diǎn),直線經(jīng)過B、C兩點(diǎn). 拋物線的頂點(diǎn)為D

1)求拋物線和直線的解析式;

2)判斷△BCD的形狀并說明理由.

3)如圖②,若點(diǎn)E是線段BC上方的拋物線上的一個(gè)動(dòng)點(diǎn),過E點(diǎn)作EFx軸于點(diǎn)FEF交線段BC于點(diǎn)G,當(dāng)△ECG是直角三角形時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案