【題目】如圖1,在矩形紙片ABCD中,AB12cm,AD20cm,折疊紙片使B點落在邊AD上的E處,折痕為PQ,過點EEFABPQF,連接BF

1)求證:四邊形BFEP為菱形;

2)當點EAD邊上移動時,折痕的端點P、Q也隨之移動;

①當點Q與點C重合時(如圖2),求菱形BFEP的邊長;

②若限定P、Q分別在邊BABC上移動,求出點E在邊AD上移動的最大距離.

【答案】1)證明見解析;(2)①菱形BFEP的邊長為cm;②點E在邊AD上移動的最大距離為8cm

【解析】

1)由折疊的性質(zhì)得出PB=PE,BF=EF,∠BPF=EPF,由平行線的性質(zhì)得出∠BPF=EFP,證出∠EPF=EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出結論;
2)①由矩形的性質(zhì)得出BC=AD=20cm,CD=AB=12cm,∠A=D=90°,由對稱的性質(zhì)得出CE=BC=20cm,在RtCDE中,由勾股定理求出DE=16cm,得出AE=AD-DE=4cm;在RtAPE中,由勾股定理得出方程,解方程得出EP=cm即可;
②當點Q與點C重合時,點E離點A最近,由①知,此時AE=4cm;當點P與點A重合時,點E離點A最遠,此時四邊形ABQE為正方形,AE=AB=3cm,即可得出答案.

1)證明:∵折疊紙片使B點落在邊AD上的E處,折痕為PQ,

∴點B與點E關于PQ對稱,

PBPE,BFEF,∠BPF=∠EPF

又∵EFAB,

∴∠BPF=∠EFP,

∴∠EPF=∠EFP

EPEF,

BPBFEFEP,

∴四邊形BFEP為菱形;

2)①∵四邊形ABCD是矩形,

BCAD20cm,CDAB12cm,∠A=∠D90°,

∵點B與點E關于PQ對稱,

CEBC20cm

RtCDE中,DE16cm,

AEADDE20cm16cm4cm

RtAPE中,AE4AP12PB12PE,

EP242+12EP2

解得:EPcm,

∴菱形BFEP的邊長為cm;

②當點Q與點C重合時,如圖2

E離點A最近,由①知,此時AE4cm

當點P與點A重合時,如圖3所示:

E離點A最遠,此時四邊形ABQE為正方形,AEAB12cm,

∴點E在邊AD上移動的最大距離為8cm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,上一點,過的切線,交的延長線于點,過,交延長線于點,連接,交于點,交于點,連接

1)求證:;

2)連接,若,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次促銷活動中,某商場為了吸引顧客,設立了一個可以自由轉動的轉盤(如圖,轉盤被平均分成份),并規(guī)定:顧客每購買元的商品,就能獲得一次轉動轉盤的機會.如果轉盤停止后,指針正好對準紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得元、元、元的購物券,憑購物券可以在該商場繼續(xù)購物.如果顧客不愿意轉轉盤,那么可以直接獲得購物券元.

(1)求每轉動一次轉盤所獲購物券金額的平均數(shù);

(2)如果你在該商場消費元,你會選擇轉轉盤還是直接獲得購物券?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線軸交于點、(在點的左側),經(jīng)過點的直線軸交于點,與拋物線的另一個交點為

1)則點的坐標為__________,點的坐標為__________,拋物線的對稱軸為__________;

2)點是直線下方拋物線上的一點,當時.求面積的最大值;

3)設為拋物線對稱軸上一點,點在拋物線上,若以點、、為頂點的四邊形為矩形,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為了解本地七年級學生寒假期間參加社會實踐活動情況,隨機抽查了部分七年級學生寒假參加社會實踐活動的天數(shù)(“A﹣﹣﹣不超過5”、“B﹣﹣﹣6”、“C﹣﹣﹣7”、“D﹣﹣﹣8”、“E﹣﹣﹣9天及以上),并將得到的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.

請根據(jù)以上的信息,回答下列問題:

(1)補全扇形統(tǒng)計圖和條形統(tǒng)計圖;

(2)所抽查學生參加社會實踐活動天數(shù)的眾數(shù)是   (選填:A、B、C、D、E);

(3)若該市七年級約有2000名學生,請你估計參加社會實踐活動天數(shù)不少于7的學生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著交通道路的不斷完善,帶動了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點,該市旅游部門統(tǒng)計繪制出2017年“五一”長假期間旅游情況統(tǒng)計圖,根據(jù)以下信息解答下列問題:

(1)2017年“五一”期間,該市周邊景點共接待游客 萬人,扇形統(tǒng)計圖中A景點所對應的圓心角的度數(shù)是 ,并補全條形統(tǒng)計圖.

(2)根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預計2018年“五一”節(jié)將有80萬游客選擇該市旅游,請估計有多少萬人會選擇去E景點旅游?

(3)甲、乙兩個旅行團在A、B、D三個景點中,同時選擇去同一景點的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】王老師在數(shù)學課上帶領同學們做數(shù)學游戲,規(guī)則如下:

游戲規(guī)則

甲任報一個有理數(shù)數(shù)傳給乙;

乙把這個數(shù)減后報給丙;

丙再把所得的數(shù)的絕對值報給;

丁再把這個數(shù)的一半減,報出答案.

根據(jù)游戲規(guī)則,回答下面的問題:

1)若甲報的數(shù)為,則乙報的數(shù)為_________,丁報出的答案是_________;

2)若甲報的數(shù)為,請列出算式并計算丁報出的答案;

3)若丁報出的答案是,則直接寫出甲報的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形 ABCD 中,M,NP,Q 分別為邊 AB,BC,CD,DA 上的點(不與端點重合).對于任意矩形 ABCD,下面四個結論中:①存在無數(shù)個四邊形 MNPQ 是平行四邊形;②存在無數(shù)個四邊形 MNPQ 是矩形;③存在無數(shù)個四邊形 MNPQ 是菱形;④不存在四邊形 MNPQ 是正方形.所有正確結論的序號是_________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB8BC4,將矩形沿AC折疊,點D落在點D′處,則重疊部分△AFC的面積為(

A.6B.8C.10D.12

查看答案和解析>>

同步練習冊答案