【題目】已知:一元二次方程(k-1x2-2kx+k+20有兩個不相等的實數(shù)根.

1)求k的取值范圍;

2)設(shè)x1,x2是方程的兩個不相等的實數(shù)根,且滿足(k-1x12+2kx2+k+2=4x1x2.求k的值;

【答案】1k2k1;(2)k的值為-1.

【解析】

1)根據(jù)方程有兩個不相等的實數(shù)根可得:,并且注意k-10,即可得出答案;

2)利用韋達(dá)定理求出x1+x2x1x2,代入(k-1x12+2kx2+k+2=4x1x2中,即可求出k的值.

解:(1)△=(-2k2-4k-1)(k+2)>0,解得k2.即k2k1

2)由題意得(k-1x12+(k+2)=2kx1①,

將①代入(k-1x12+2kx2+k+2=4x1x2中得:2kx1+x2)=4x1x2

又∵x1+x2=x1x2=,  ∴2k=4

解得:k1=-1,k2=2(不合題意,舍去).

∴k的值為-1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線頂點為A2,4),且過原點,與x軸的另一個交點為B,

①求拋物線的解析式;

②求AOB面積;

③拋物線上是否存在點M,使OBM的面積等于10?若存在,求出M點坐標(biāo),若不存在,說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學(xué)生飲用.某校為了了解學(xué)生對不同口味的牛奶的喜好,對全校訂牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.根據(jù)統(tǒng)計圖的信息解決下列問題

(1)本次調(diào)查的學(xué)生有多少人?

(2)補(bǔ)全上面的條形統(tǒng)計圖;

(3)扇形統(tǒng)計圖中C對應(yīng)的中心角度數(shù)是_____

(4)若該校有600名學(xué)生訂了該品牌的牛奶,每名學(xué)生每天只訂一盒牛奶,要使學(xué)生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+cba0)與x軸最多有一個交點,現(xiàn)有以下四個結(jié)論:①該拋物線的對稱軸在y軸左側(cè);②關(guān)于x的方程ax2+bx+c=0無實數(shù)根;③a-b+c≥0;④的最小值為3,其中正確結(jié)論的個數(shù)是( 。

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,AB=8BC=4,動點P以每秒2個單位的速度從點A沿線段ABB點運動,同時動點Q以每秒3個單位的速度從點B出發(fā)沿B-C-D的方向運動,當(dāng)點Q到達(dá)點DP、Q同時停止運動,若記△PQA的面積為y,運動時間為x,則下列圖象中能大致表示yx之間函數(shù)關(guān)系圖象的是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x1,x2是關(guān)于x的一元二次方程4kx2﹣4kx+k+1=0的兩個實數(shù)根.

(1)是否存在實數(shù)k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,說明理由;

(2)求使﹣2的值為整數(shù)的實數(shù)k的整數(shù)值;

(3)若k=﹣2,λ=,試求λ的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】地和地之間的鐵路交通設(shè)有特快列車和普通列車兩種車次,某天一輛普通列車從A地出發(fā)勻速駛向地,同時另一輛特快列車從地出發(fā)勻速駛向地,兩車與地的距離(千米)與行駛時間(時)的函數(shù)關(guān)系如圖所示.

1地到地的距離為 千米,普通列車到達(dá)地所用時間為 小時;

2)求特快列車與地的距離的函數(shù)關(guān)系式;

3)在、兩地之間有一座鐵路橋,特快列車到鐵路橋后又行駛小時與普通列車相遇,直接寫出地與鐵路橋之間的距離 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,DE分別是AB、AC邊上的點,點FBC的延長線上,DEBC,若∠A48°,∠154°,則下列正確的是( 。

A. 248°B. 254°C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于點,對稱軸為直線,,下列結(jié)論:①;②9a+3b+c=0;③若點,點是此函數(shù)圖象上的兩點,則;④.其中正確的個數(shù)(

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習(xí)冊答案