【題目】已知:一元二次方程(k-1)x2-2kx+k+2=0有兩個不相等的實數(shù)根.
(1)求k的取值范圍;
(2)設(shè)x1,x2是方程的兩個不相等的實數(shù)根,且滿足(k-1)x12+2kx2+k+2=4x1x2.求k的值;
【答案】(1)k<2且k≠1;(2)k的值為-1.
【解析】
(1)根據(jù)方程有兩個不相等的實數(shù)根可得:,并且注意k-1≠0,即可得出答案;
(2)利用韋達(dá)定理求出x1+x2和x1x2,代入(k-1)x12+2kx2+k+2=4x1x2中,即可求出k的值.
解:(1)△=(-2k)2-4(k-1)(k+2)>0,解得k<2.即k<2且k≠1.
(2)由題意得(k-1)x12+(k+2)=2kx1①,
將①代入(k-1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.
又∵x1+x2=,x1x2=, ∴2k=4.
解得:k1=-1,k2=2(不合題意,舍去).
∴k的值為-1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線頂點為A(2,4),且過原點,與x軸的另一個交點為B,
①求拋物線的解析式;
②求△AOB面積;
③拋物線上是否存在點M,使△OBM的面積等于10?若存在,求出M點坐標(biāo),若不存在,說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學(xué)生飲用.某校為了了解學(xué)生對不同口味的牛奶的喜好,對全校訂牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.根據(jù)統(tǒng)計圖的信息解決下列問題:
(1)本次調(diào)查的學(xué)生有多少人?
(2)補(bǔ)全上面的條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中C對應(yīng)的中心角度數(shù)是_____;
(4)若該校有600名學(xué)生訂了該品牌的牛奶,每名學(xué)生每天只訂一盒牛奶,要使學(xué)生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個交點,現(xiàn)有以下四個結(jié)論:①該拋物線的對稱軸在y軸左側(cè);②關(guān)于x的方程ax2+bx+c=0無實數(shù)根;③a-b+c≥0;④的最小值為3,其中正確結(jié)論的個數(shù)是( 。
A.1 個B.2 個C.3 個D.4 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,AB=8,BC=4,動點P以每秒2個單位的速度從點A沿線段AB向B點運動,同時動點Q以每秒3個單位的速度從點B出發(fā)沿B-C-D的方向運動,當(dāng)點Q到達(dá)點D時P、Q同時停止運動,若記△PQA的面積為y,運動時間為x,則下列圖象中能大致表示y與x之間函數(shù)關(guān)系圖象的是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x1,x2是關(guān)于x的一元二次方程4kx2﹣4kx+k+1=0的兩個實數(shù)根.
(1)是否存在實數(shù)k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,說明理由;
(2)求使﹣2的值為整數(shù)的實數(shù)k的整數(shù)值;
(3)若k=﹣2,λ=,試求λ的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】地和地之間的鐵路交通設(shè)有特快列車和普通列車兩種車次,某天一輛普通列車從A地出發(fā)勻速駛向地,同時另一輛特快列車從地出發(fā)勻速駛向地,兩車與地的距離(千米)與行駛時間(時)的函數(shù)關(guān)系如圖所示.
(1)地到地的距離為 千米,普通列車到達(dá)地所用時間為 小時;
(2)求特快列車與地的距離與的函數(shù)關(guān)系式;
(3)在、兩地之間有一座鐵路橋,特快列車到鐵路橋后又行駛小時與普通列車相遇,直接寫出地與鐵路橋之間的距離 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC邊上的點,點F在BC的延長線上,DE∥BC,若∠A=48°,∠1=54°,則下列正確的是( 。
A. ∠2=48°B. ∠2=54°C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于點,對稱軸為直線,,下列結(jié)論:①;②9a+3b+c=0;③若點,點是此函數(shù)圖象上的兩點,則;④.其中正確的個數(shù)( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com