【題目】一個不透明的口袋里面有13個完全相同的小球,在每一個小球上書寫一個漢字,這些漢字組成一句話:“知之為知之,不知為不知,是知也”.隨機(jī)摸出一個小球然后放回,再隨機(jī)摸取一個小球,兩次取出的小球都是“知”的概率是______.
【答案】
【解析】
首先根據(jù)題意畫出表格圖,然后由表格圖求得所有等可能的結(jié)果與兩次摸出的小球都是“知”的情況,再利用概率公式即可求得答案.
畫出表格如下:(用“A”表示都是“知”,用“B”表示其他情況)
知 | 之 | 為 | 知 | 之 | 不 | 知 | 為 | 不 | 知 | 是 | 知 | 也 | |
知 | A | B | B | A | B | B | A | B | B | A | B | A | B |
之 | B | B | B | B | B | B | B | B | B | B | B | B | B |
為 | B | B | B | B | B | B | B | B | B | B | B | B | B |
知 | A | B | B | A | B | B | A | B | B | A | B | A | B |
之 | B | B | B | B | B | B | B | B | B | B | B | B | B |
不 | B | B | B | B | B | B | B | B | B | B | B | B | B |
知 | A | B | B | A | B | B | A | B | B | A | B | A | B |
為 | B | B | B | B | B | B | B | B | B | B | B | B | B |
不 | B | B | B | B | B | B | B | B | B | B | B | B | B |
知 | A | B | B | A | B | B | A | B | B | A | B | A | B |
是 | B | B | B | B | B | B | B | B | B | B | B | B | B |
知 | A | B | B | A | B | B | A | B | B | A | B | A | B |
也 | B | B | B | B | B | B | B | B | B | B | B | B | B |
共有169種等可能結(jié)果,其中兩次摸出都是“知”的有25種,
∴兩次摸出都是“知”的概率是,
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鐘南山院士談到防護(hù)新型冠狀病毒肺炎時說:“我們需要重視防護(hù),但也不必恐慌,盡量少去人員密集的場所,出門戴口罩,在室內(nèi)注意通風(fēng),勤洗手,多運動,少熬夜.”某社區(qū)為了加強(qiáng)社區(qū)居民對新型冠狀病毒肺炎防護(hù)知識的了解,通過微信群宣傳新型冠狀病毒肺炎的防護(hù)知識,并鼓勵社區(qū)居民在線參與作答《2020年新型冠狀病毒防治全國統(tǒng)一考試(全國卷)》試卷,社區(qū)管理員隨機(jī)從甲、乙兩個小區(qū)各抽取20名人員的答卷成績,并對他們的成績(單位:分)進(jìn)行統(tǒng)計、分析,過程如下:
收集數(shù)據(jù)
甲小區(qū):85 80 95 100 90 95 85 65 75 85 90 90 70 90 100 80 80 90 95 75
乙小區(qū):80 60 80 95 65 100 90 85 85 80 95 75 80 90 70 80 95 75 100 90
整理數(shù)據(jù)
成績x(分) | 60≤x≤70 | 70<x≤80 | 80<x≤90 | 90<x≤100 |
甲小區(qū) | 2 | 5 | a | b |
乙小區(qū) | 3 | 7 | 5 | 5 |
分析數(shù)據(jù)
統(tǒng)計量 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲小區(qū) | 85.75 | 87.5 | c |
乙小區(qū) | 83.5 | d | 80 |
應(yīng)用數(shù)據(jù)
(1)填空:a= ,b= ,c= ,d= ;
(2)若甲小區(qū)共有800人參與答卷,請估計甲小區(qū)成績大于90分的人數(shù);
(3)社區(qū)管理員看完統(tǒng)計數(shù)據(jù),認(rèn)為甲小區(qū)對新型冠狀病毒肺炎防護(hù)知識掌握更好,請你寫出社區(qū)管理員的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次課題學(xué)習(xí)中活動中,老師提出了如下一個問題:
點P是正方形ABCD內(nèi)的一點,過點P畫直線l分別交正方形的兩邊于點M、N,使點P是線段MN的三等分點,這樣的直線能夠畫幾條?
經(jīng)過思考,甲同學(xué)給出如下畫法:
如圖1,過點P畫PE⊥AB于E,在EB上取點M,使EM=2EA,畫直線MP交AD于N,則直線MN就是符合條件的直線l.
根據(jù)以上信息,解決下列問題:
(1)甲同學(xué)的畫法是否正確?請說明理由.
(2)在圖1中,能否畫出符合題目條件的直線?如果能,請直接在圖1中畫出.
(3)如圖2,A1、C1分別是正方形ABCD的邊AB、CD上的三等分點,且A1C1∥AD.當(dāng)點P在線段A1C1上時,能否畫出符合題目條件的直線?如果能,可以畫出幾條?
(4)如圖3,正方形ABCD邊界上的A1、A2、B1、B2、C1、C2、D1、D2都是所在邊的三等分點.當(dāng)點P在正方形ABCD內(nèi)的不同位置時,試討論,符合題目條件的直線l的條數(shù)的情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,△ABC內(nèi)接于⊙O.點D在⊙O上,AD平分∠CAB交BC于點E,DF是⊙O的切線,交AC的延長線于點F.
(1)求證;DF⊥AF;
(2)若⊙O的半徑是5, AD=8,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為調(diào)查“停課不停學(xué)”期間九年級學(xué)生平均每天上網(wǎng)課時長,隨機(jī)抽取了名九年級學(xué)生做網(wǎng)絡(luò)問卷調(diào)查.共四個選項:小時以下)、小時)、小時), 小時以上),每人只能選一
項.并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計表和統(tǒng)計圖.
被調(diào)查學(xué)生平均每天上網(wǎng)課時間統(tǒng)計表
時長 | 所占百分比 |
合計 |
根據(jù)以上信息,解答下列問題:
, ,
補(bǔ)全條形統(tǒng)計圖;
該校有九年級學(xué)生名,請你估計仝校九年級學(xué)生平均每天上網(wǎng)課時長在小時及以上的共多少名;
在被調(diào)查的對象中,平均每天觀看時長超過小時的,有名來自九班,名來自九班,其余都來自九班,現(xiàn)教導(dǎo)處準(zhǔn)備從選項中任選兩名學(xué)生進(jìn)行電話訪談,請用列表法或畫樹狀圖的方法求所抽取的名學(xué)生恰好來自同一個班級的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點A(a,0)為x軸上一動點,點M(1,﹣1)、點N(3,﹣4),連接AM、MN,點N關(guān)于直線AM的對稱點為N′.
(1)若a=2,在圖1中畫出線段MN關(guān)于直線AM的對稱圖形MN′(保留作圖痕跡),直接寫出點N′的坐標(biāo) ;
(2)若a>0,連接AN、AN′,當(dāng)點A運動到∠N′AN=90°時,點N′恰好在雙曲線y=上(如圖2),求k的值;
(3)點A在x軸上運動,若∠N′MN=90°,此時a的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,點是上一點,點是的中點,過點作的切線,與、的延長線分別交于點、,連接.
(1)求證:;
(2)直接回答:①已知,當(dāng)為何值時,?
②連接、、,當(dāng)等于多少度時,四邊形是菱形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A(1,4),B(4,2),C(3,5)(每個方格的邊長均為1個單位長度).
(1)請畫出△A1B1C1,使△A1B1C1與△ABC關(guān)于x軸對稱;
(2)將△ABC繞點O逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A2B2C2,并直接寫出點B旋轉(zhuǎn)到點B2所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】PM2.5是指大氣中直徑小于或等于2.5μm(0.0000025m)的顆粒物,含有大量有毒、有害物質(zhì),也稱可入肺顆粒物.將0.0000025用科學(xué)記數(shù)法表示為
A.25×10﹣7B.2.5×10﹣6C.0.25×10﹣5D.2.5×106
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com