【題目】如圖所示,在平行四邊形ABCD中,∠ABC的平分線交AD于E,且AE=2,DE=1,則平行四邊形ABCD的周長(zhǎng)等于_____.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=6,BC=5,AC=4,D是線段AB上一點(diǎn),且DB=4,過點(diǎn)D作DE與線段AC相交于點(diǎn)E,使以A,D,E為頂點(diǎn)的三角形與△ABC相似,求DE的長(zhǎng).請(qǐng)根據(jù)下列兩位同學(xué)的交流回答問題:
(1)寫出正確的比例式及后續(xù)解答;
(2)指出另一個(gè)錯(cuò)誤,并給予正確解答.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形OABC的一邊OA在x軸的負(fù)半軸上,O是坐標(biāo)原點(diǎn),tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)C,與AB交于點(diǎn)D,若△COD的面積為20,則k的值等于( 。
A.20B.24C.﹣20D.﹣24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖物體由兩個(gè)圓錐組成,其主視圖中,.若上面圓錐的側(cè)面積為1,則下面圓錐的側(cè)面積為( )
A. 2B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了節(jié)省材料,某水產(chǎn)養(yǎng)殖戶利用本庫的岸堤(岸堤足夠長(zhǎng))為一邊,用總長(zhǎng)為160m的圍網(wǎng)在水庫中圍成了如圖所示的①、②、③三塊矩形區(qū)域網(wǎng)箱,而且這三塊矩形區(qū)域的面積相等,設(shè)BE的長(zhǎng)度為xm,矩形區(qū)域ABCD的面積為ym2.
(1)則AE= m,BC= m;(用含字母x的代數(shù)式表示)
(2)求矩形區(qū)域ABCD的面積y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“創(chuàng)全國(guó)文明城市”活動(dòng)中,某社區(qū)為了了解居民掌握垃圾分類知識(shí)的情況進(jìn)行調(diào)查.其中A、B兩小區(qū)分別有500名居民,社區(qū)從中各隨機(jī)抽取50名居民進(jìn)行相關(guān)知識(shí)測(cè)試,并將成績(jī)進(jìn)行整理得到部分信息:
(信息一)A小區(qū)50名居民成績(jī)的頻數(shù)直方圖如圖(每一組含前一個(gè)邊界值,不含后一個(gè)邊界值);
(信息二)圖中,從左往右第四組的成績(jī)?nèi)缦?/span>
75 | 75 | 79 | 79 | 79 | 79 | 80 | 80 |
81 | 82 | 82 | 83 | 83 | 84 | 84 | 84 |
(信息三)A、B兩小區(qū)各50名居民成績(jī)的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(80分及以上為優(yōu)秀)、方差等數(shù)據(jù)如下(部分空缺):
小區(qū) | 平均數(shù) | 中位數(shù) | 眾數(shù) | 優(yōu)秀率 | 方差 |
A | 75.1 | 79 | 40% | 277 | |
B | 75.1 | 77 | 76 | 45% | 211 |
根據(jù)以上信息,回答下列問題:
(1)求A小區(qū)50名居民成績(jī)的中位數(shù).
(2)請(qǐng)估計(jì)A小區(qū)500名居民中能超過平均數(shù)的有多少人?
(3)請(qǐng)盡量從多個(gè)角度比較、分析A,B兩小區(qū)居民掌握垃圾分類知識(shí)的情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,AC是⊙O的切線,BC交⊙O于點(diǎn)D(如圖1).
(1)若AB=2,∠B=30°,求CD的長(zhǎng);
(2) 取AC的中點(diǎn)E,連結(jié)D、E(如圖2),求證:DE與⊙O相切.
【答案】(1);(2)見解析
【解析】分析:連接AD ,根據(jù)AC是⊙O的切線,AB是⊙O的直徑,得到∠CAB=∠ADB=90°,根據(jù)∠B=30°,解直角三角形求得的長(zhǎng)度.
連接OD,AD.根據(jù)DE=CE=EA,∠EDA=∠EAD. 根據(jù)OD=OA,得到
∠ODA=∠DAO,得到∠EDA+∠ODA=∠EAD+∠DAO.得到∠EDO=90°即可.
詳解:(1)如圖,連接AD ,
∵AC是⊙O的切線,AB是⊙O的直徑,
∴∠CAB=∠ADB=90°,
∴ΔCAB,ΔCAD均是直角三角形.
∴∠CAD=∠B=30°.
在RtΔCAB中,AC=ABtan30°=
∴在RtΔCAD中,CD=ACsin30°=
(2)如圖,連接OD,AD.
∵AC是⊙O的切線,AB是⊙O的直徑,
∴∠CAB=∠ADB=∠ADC=90°,
又∵E為AC中點(diǎn),
∴DE=CE=EA,
∴∠EDA=∠EAD.
∵OD=OA,
∴∠ODA=∠DAO,
∴∠EDA+∠ODA=∠EAD+∠DAO.
即:∠EDO=∠EAO=90°.
又點(diǎn)D在⊙O上,因此DE與⊙O相切.
點(diǎn)睛:考查解直角三角形,圓周角定理,切線的判定與性質(zhì)等,屬于圓的綜合題,比較基礎(chǔ).注意切線的證明方法,是高頻考點(diǎn).
【題型】解答題
【結(jié)束】
21
【題目】課外活動(dòng)時(shí)間,甲、乙、丙、丁4名同學(xué)相約進(jìn)行羽毛球比賽.
(1)如果將4名同學(xué)隨機(jī)分成兩組進(jìn)行對(duì)打,求恰好選中甲乙兩人對(duì)打的概率;
(2)如果確定由丁擔(dān)任裁判,用“手心、手背”的方法在另三人中競(jìng)選兩人進(jìn)行比賽.競(jìng)選規(guī)則是:三人同時(shí)伸出“手心”或“手背”中的一種手勢(shì),如果恰好只有兩人伸出的手勢(shì)相同,那么這兩人上場(chǎng),否則重新競(jìng)選.這三人伸出“手心”或“手背”都是隨機(jī)的,求一次競(jìng)選就能確定甲、乙進(jìn)行比賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+3的圖象交x軸于點(diǎn)A(1,0),B(3,0),交y軸于點(diǎn)C.
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)點(diǎn)P是直線BC下方拋物線上的一動(dòng)點(diǎn),求△BCP面積的最大值;
(3)直線x=m分別交直線BC和拋物線于點(diǎn)M,N,當(dāng)△BMN是等腰三角形時(shí),直接寫出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)與二次函數(shù)在同一坐標(biāo)系中的圖象如圖所示,則其解析式可能是( 。
A.y=,y=kx2+kxB.y=,y=kx2﹣kx
C.y=﹣,y=﹣kx2﹣kxD.y=﹣,y=kx2+kx
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com