關(guān)于中心對稱的兩個圖形,對稱點的連線都經(jīng)過________,并且________.

答案:對稱中心,被對稱中心平分
解析:

對稱中心,被對稱中心平分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax2-2ax-3a(a>0).
(1)求此二次函數(shù)圖象與x軸交點A、B(A在B的左邊)的坐標(biāo);
(2)若此二次函數(shù)圖象與y軸交于點C、且△AOC∽△COB(字母依次對應(yīng)).
①求a的值;
②求此時函數(shù)圖象上關(guān)于原點中心對稱的兩個點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、(1)如圖1中的兩個圖形成中心對稱,找到對稱中心O.
(2)圖2中的兩個圖形是軸對稱圖形,畫出它們的對稱軸.
(3)在圖3所示編號為(1)、(2)、(3)、(4)的四個三角形中,關(guān)于直線y對稱的兩個三角形的編號為
(1)(2)
;關(guān)于O對稱的兩個三角形的編號為
(1)(3)

(4)圖4中,畫出與△ABC關(guān)于直線x對稱的△A1B1C1

(5)有一個大圓,兩個相等的小圓.問三個圓怎樣放,才能使組成的圖形分別滿足“①有一條對稱軸;②有兩條對稱軸;③有無數(shù)條對稱軸”?(分別在三個大圓上畫兩個小圓).

(6)如圖5所示,圓心A、B、C的坐標(biāo)分別是A (2,-3)、B (3,-3),C (4,-3),試畫出這個圖案關(guān)于原點O對稱的圖案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知頂點為C的拋物線y=ax2-4ax+c經(jīng)過點(-2,0),與y軸交于點A(0,3),點B是拋物線上的點,且滿足AB∥x軸.
(1)求拋物線的表達(dá)式;
(2)求拋物線上關(guān)于原點中心對稱的兩個點的坐標(biāo);
(3)在線段AB上是否存在點P,使得以P、A、C為頂點的三角形與△AOC相似?若存在,求點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:黃浦區(qū)一模 題型:解答題

已知二次函數(shù)y=ax2-2ax-3a(a>0).
(1)求此二次函數(shù)圖象與x軸交點A、B(A在B的左邊)的坐標(biāo);
(2)若此二次函數(shù)圖象與y軸交于點C、且△AOC△COB(字母依次對應(yīng)).
①求a的值;
②求此時函數(shù)圖象上關(guān)于原點中心對稱的兩個點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年廣東省深圳市中考數(shù)學(xué)信息卷(六)(解析版) 題型:解答題

如圖,已知頂點為C的拋物線y=ax2-4ax+c經(jīng)過點(-2,0),與y軸交于點A(0,3),點B是拋物線上的點,且滿足AB∥x軸.
(1)求拋物線的表達(dá)式;
(2)求拋物線上關(guān)于原點中心對稱的兩個點的坐標(biāo);
(3)在線段AB上是否存在點P,使得以P、A、C為頂點的三角形與△AOC相似?若存在,求點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案