【題目】如圖所示為在數(shù)軸上表示的某不等式組的解集,則這個不等式組可能是( 。
A. B.
C. D.
【答案】C
【解析】
數(shù)軸上表示的解集是2≤x<3,再根據(jù)不等式組的求法,先分別求出不等式組中每個不等式的解,即可得到不等式的解集,最后根據(jù)所求不等式組的解集是否與題干中的解集進(jìn)行判斷,即可得到答案.
解:數(shù)軸上表示的解集是2≤x<3,
A、,
∵解不等式①得:x≤2,
解不等式②得:x>3,
∴不等式組無解,故本選項不符合題意;
B、
∵解不等式①得:x>2,
解不等式②得:x≤3,
∴不等式組的解集是2<x≤3,故本選項不符合題意;
C、
∵解不等式①得:x≥2,
解不等式②得:x<3,
∴不等式組的解集是2≤x<3,故本選項符合題意;
D、
∵解不等式①得:x<2,
解不等式②得:x≥3,
∴不等式組無解,故本選項不符合題意;
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a<0<b)的圖像與x軸只有一個交點,下列結(jié)論:①x<0時,y隨x增大而增大;②a+b+c<0;③關(guān)于x的方程ax2+bx+c+2=0有兩個不相等的實數(shù)根.其中所有正確結(jié)論的序號是( )
A.①②B.②③C.①③D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PA,PB,AB,已知∠PBA=∠C.
(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某?萍紝嵺`社團(tuán)制作實踐設(shè)備,小明的操作過程如下:①小明取出老師提供的圓形細(xì)鐵環(huán),先通過在圓一章中學(xué)到的知識找到圓心O,再任意找出圓O的一條直徑標(biāo)記為AB(如圖1),測量出AB=4分米;②將圓環(huán)進(jìn)行翻折使點B落在圓心O的位置,翻折部分的圓環(huán)和未翻折的圓環(huán)產(chǎn)生交點分別標(biāo)記為C、D(如圖2);③用一細(xì)橡膠棒連接C、D兩點(如圖3);④計算出橡膠棒CD的長度.
小明計算橡膠棒CD的長度為( 。
A.2分米B.2分米C.3分米D.3分米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)自變量的值和它對應(yīng)的函數(shù)值如下表所示:
0 | 1 | 2 | 3 | 4 | |||
3 | 0 | -1 | 0 |
(1)請寫出該二次函數(shù)圖像的開口方向、對稱軸、頂點坐標(biāo)和的值;
(2)設(shè)該二次函數(shù)圖像與軸的左交點為,它的頂點為,該圖像上點的橫坐標(biāo)為4,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年2月18日,“時代楷模”、伏牛山里的好教師﹣﹣張玉滾當(dāng)選“感動中國”2018年度人物,在中原大地引起強烈反響.為了解學(xué)生對張玉滾事跡的知曉情況,某數(shù)學(xué)課外興趣小組在本校學(xué)生中開展了專題調(diào)查活動,隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,根據(jù)學(xué)生的答題情況,將結(jié)果分為A,B,C,D四類,將調(diào)查的數(shù)據(jù)整理后繪制成如下統(tǒng)計表及條形統(tǒng)計圖(均不完整):
關(guān)注情況 | 頻數(shù) | 頻率 |
A.非常了解 | m | 0.1 |
B.比較了解 | 100 | 0.5 |
C.基本了解 | 30 | n |
D.不太了解 | 50 | 0.25 |
根據(jù)以上信息解答下列問題:
(1)在這次抽樣調(diào)查中,一共抽查了 名學(xué)生;
(2)統(tǒng)計表中,m= ,n= ;
(3)請把條形統(tǒng)計圖補充完整;
(4)該校共有學(xué)生1500名,請你估算該校學(xué)生中對張玉滾事跡“非常了解“和“比較了解”的學(xué)生共有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)一點,連接PA、PC,PA=PC,∠APC=90°,把線段AP繞點A逆時針旋轉(zhuǎn)120°,得到線段AQ(點P與點Q為對應(yīng)點),連接BQ交AP于點E.點D為BQ的中點,連接AD、PD,若S△DAP=2,則AB=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知tan∠MON=2,矩形ABCD的邊AB在射線OM上,AD=2,AB=m,CF⊥ON,垂足為點F.
(1)如圖(1),作AE⊥ON,垂足為點E. 當(dāng)m=2時,求線段EF的長度;
圖(1)
(2)如圖(2),聯(lián)結(jié)OC,當(dāng)m=2,且CD平分∠FCO時,求∠COF的正弦值;
圖(2)
(3)如圖(3),當(dāng)△AFD與△CDF相似時,求m的值.
圖(3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點O與坐標(biāo)原點重合,其邊長為2,點A,點C分別在軸,軸的正半軸上.函數(shù)的圖象與CB交于點D,函數(shù)(為常數(shù),)的圖象經(jīng)過點D,與AB交于點E,與函數(shù)的圖象在第三象限內(nèi)交于點F,連接AF、EF.
(1)求函數(shù)的表達(dá)式,并直接寫出E、F兩點的坐標(biāo).
(2)求△AEF的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com