【題目】如圖,在△ABC中,CFAB于點(diǎn)FBEAC于點(diǎn)E,MBC的中點(diǎn)連接ME、MFEF

1 求證:△MEF是等腰三角形;

2 若∠A=,∠ABC=50°,求∠EMF的度數(shù).

【答案】1)見解析;(2)∠EMF=40°

【解析】

1)易得△BCE和△BCF都是直角三角形,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得ME=MF=BC,即可得證;

2)首先根據(jù)三角形內(nèi)角和定理求出∠ACB=60°,然后由(1)可知MF=MBME=MC,利用等邊對(duì)等角可求出∠MFB=50°,∠MEC=60°,從而推出∠BMF和∠CME的度數(shù),即可求∠EMF的度數(shù).

1)∵CFAB于點(diǎn)F,BEAC于點(diǎn)E,

∴△BCE和△BCF為直角三角形

MBC的中點(diǎn)

ME=BCMF=BC

ME=MF

即△MEF是等腰三角形

2)∵∠A=70°,∠ABC=50°,

∴∠ACB=180°-70°-50°=60°

由(1)可知MF=MB,ME=MC

∴∠MFB=ABC=50°,∠MEC=ACB=60°

∴∠BMF=180°-2×50°=80°,∠CME=180°-2×60°=60°

∴∠EMF=180°-BMF-CME=180°-80°-60°=40°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本題共10分水果批發(fā)市場(chǎng)有一種高檔水果,如果每千克盈利毛利潤10元,每天可售出500千克經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下,若每千克漲價(jià)1元,日銷量將減少20千克

1若以每千克能盈利18元的單價(jià)出售,問每天的總毛利潤為多少元?

2現(xiàn)市場(chǎng)要保證每天總毛利潤6000元,同時(shí)又要使顧客得到實(shí)惠,則每千克應(yīng)漲價(jià)多少元?

3現(xiàn)需按毛利潤的10%交納各種稅費(fèi),人工費(fèi)每日按銷售量每千克支出09元,水電房租費(fèi)每日102元,若剩下的每天總純利潤要達(dá)到5100元,則每千克漲價(jià)應(yīng)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D在BC上,DE∥AC,DF∥AB,下列四個(gè)判斷中不正確的是( )

A.四邊形AEDF是平行四邊形

B.若∠BAC=90°,則四邊形AEDF是矩形

C.若AD平分∠BAC,則四邊形AEDF是矩形

D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)將下列事件發(fā)生的概率標(biāo)在圖1中(用字母表示):

1)記為點(diǎn)A:隨意擲兩枚質(zhì)地均勻的骰子,朝上面的點(diǎn)數(shù)之和為1;

2)記為點(diǎn)B:拋出的籃球會(huì)下落;

3)記為點(diǎn)C:從裝有3個(gè)紅球、7個(gè)白球的口袋中任取一個(gè)球,恰好是白球(這些球除顏色外完全相同);

4)記為點(diǎn)D:如圖2所示的正方形紙片上做隨機(jī)扎針實(shí)驗(yàn),則針頭恰好扎在陰影區(qū)域內(nèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分如圖,AC是ABCD的一條對(duì)角線,過AC中點(diǎn)O的直線分別交AD,BC于點(diǎn)E,F(xiàn)

1求證:AOE≌△COF;

2當(dāng)EF與AC滿足什么條件時(shí),四邊形AFCE是菱形?并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點(diǎn)O為圓心,作半圓與AC相切,點(diǎn)P,Q分別是邊BC和半圓上的動(dòng)點(diǎn),連接PQ,則PQ長的最小值是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=-2x+4與x軸、y軸分別交于點(diǎn)A、C,以O(shè)A、OC為邊在第一象限內(nèi)作長方形OABC

(1)求點(diǎn)A、C的坐標(biāo);

(2)將ABC對(duì)折,使得點(diǎn)A的與點(diǎn)C重合,折痕交AB于點(diǎn)D,求直線CD的解析式(圖);

(3)在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)B外),使得APC與ABC全等?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,過點(diǎn)BBEAD于點(diǎn)E,過點(diǎn)EEFAB于點(diǎn)F,與CD的延長線交于點(diǎn)G,連接BG,且BEBC,BG5,∠BGF45°,EG3,若點(diǎn)M是線段BF上的一個(gè)動(dòng)點(diǎn),將MEF沿ME所在直線翻折得到MEF,連接CF,則CF長度的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)計(jì)劃購進(jìn)、兩種新型節(jié)能臺(tái)燈共盞,這兩種臺(tái)燈的進(jìn)價(jià)、售價(jià)如表所示:

)若商場(chǎng)預(yù)計(jì)進(jìn)貨款為元,則這兩種臺(tái)燈各購進(jìn)多少盞?

)若商場(chǎng)規(guī)定型臺(tái)燈的進(jìn)貨數(shù)量不超過型臺(tái)燈數(shù)量的倍,應(yīng)怎樣進(jìn)貨才能使商場(chǎng)在銷售完這批臺(tái)燈時(shí)獲利最多?此時(shí)利潤為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案