【題目】如圖,在平面直角坐標系xOy中,點A、B、P的坐標分別為(1,0),(2,5),(4,2).若點C在第一象限內(nèi),且橫坐標、縱坐標均為整數(shù),P是△ABC的外心,則點C的坐標為 .
【答案】(7,4)或(6,5)或(1,4)
【解析】解:如圖,
∵點A、B、P的坐標分別為(1,0),(2,5),(4,2).
∴PA=PB= = ,
∵點C在第一象限內(nèi),且橫坐標、縱坐標均為整數(shù),P是△ABC的外心,
∴PC=PA=PB= = ,
則點C的坐標為 (7,4)或(6,5)或(1,4);
故答案為:(7,4)或(6,5)或(1,4).
因為P是△ABC的外心,根據(jù)三角形外心的定義可知PC=PA=PB,由勾股定理可得PC=PA=PB=,根據(jù)題意ji點C在第一象限內(nèi),且橫坐標、縱坐標均為整數(shù)并結(jié)合圖形可知點C的坐標為 (7,4)或(6,5)或(1,4)。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB∥ED,設∠A+∠E=α,∠B+∠C+∠D=β,則( )
A. α-β=0B. 2α-β=0C. α-2β=0D. 3α-2β=0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一艘船由A港沿北偏東60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.
(1)求A,C兩港之間的距離(結(jié)果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);
(2)確定C港在A港的什么方向.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖的對角線相交于點過點與分別相交于點,
(1)求證:
(2)若圖中的條件都不變,將轉(zhuǎn)動到圖的位置,那么上述結(jié)論是否成立?(不用證明)
(3)若將向兩方延長與平行四邊形的兩對邊的延長線分別相交(圖和圖),結(jié)論是否成立,說明你的理由,(選用圖進行證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為銳角三角形ABC的外心,四邊形OCDE為正方形,其中E點在△ABC的外部,判斷下列敘述何者正確( )
A.O是△AEB的外心,O是△AED的外心
B.O是△AEB的外心,O不是△AED的外心
C.O不是△AEB的外心,O是△AED的外心
D.O不是△AEB的外心,O不是△AED的外心
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD為△ABC外接圓的直徑,AD⊥BC,垂足為點F,∠ABC的平分線交AD于點E,連接BD,CD.
(1)求證:BD=CD;
(2)請判斷B,E,C三點是否在以D為圓心,以DB為半徑的圓上?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,若∠2=40°,則圖中∠1的度數(shù)為( 。
A.115°
B.120°
C.130°
D.140°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)觀察推理:如圖 1,△ABC 中,∠ACB=90°,AC=BC,直線 L 過點C,點 A,B 在直線 L 同側(cè),BD⊥L, AE⊥L,垂足分別為D,E
求證:△AEC≌△CDB
(2)類比探究:如圖 2,Rt△ABC 中,∠ACB=90°,AC=4,將斜邊 AB 繞點 A 逆時針旋轉(zhuǎn) 90°至 AB’, 連接B’C,求△AB’C 的面積
(3)拓展提升:如圖 3,等邊△EBC 中,EC=BC=3cm,點 O 在 BC 上且 OC=2cm,動點 P 從點 E 沿射線EC 以 1cm/s 速度運動,連接 OP,將線段 OP 繞點O 逆時針旋轉(zhuǎn) 120°得到線段 OF,設點 P 運動的時間為t 秒。
當t= 秒時,OF∥ED
若要使點F 恰好落在射線EB 上,求點P 運動的時間t
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=ax+b與反比例函數(shù)y= ,其中ab<0,a、b為常數(shù),它們在同一坐標系中的圖象可以是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com