【題目】如圖所示,在Rt△ABC中,∠ACB=90°,∠A=30°,DE垂直平分AC,D為垂足,交AB于E,連接CE.
(1)求∠ECB的度數(shù);
(2)若AB=10,求△BCE的周長.

【答案】
(1)解:∵DE垂直平分AC,∠A=30°,

∴AE=CE,∠ACE=∠A=30°,

∵∠ACB=90°,

∴∠BCE=90°﹣30°=60°


(2)解:∵∠ACB=90°,∠A=30°,

∴BC= AB=5,

∴△BCE的周長=CE+BE+BC=AE+BE+BC=AB+BC=15


【解析】(1)根據(jù)△ABC中DE垂直平分AC,可求出AE=CE,再根據(jù)等腰三角形的性質(zhì)求出∠ACE=∠A=30°,再根據(jù)∠ACB=90°即可解答;(2)根據(jù)含30°角的直角三角形的性質(zhì)得到BC= AB=5,于是得到結(jié)論.
【考點精析】本題主要考查了線段垂直平分線的性質(zhì)的相關(guān)知識點,需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張老師給同學(xué)們出了一道題:當(dāng)x=2018,y=2017時,求[(2x3y-2x2y2)+xy(2xy-x2)]÷x2y的值.題目出完后,小明說:“老師給的條件y=2017是多余的.”小兵說:“不多余,不給這個條件,就不能求出結(jié)果.”你認(rèn)為他們誰說得有道理?并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若a、b互為相反數(shù),c、d互為倒數(shù),則(a+b)﹣3cd=____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年端午前夕,某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用AB、C、D表示)這四種不同口味粽子的喜愛情況,對某小區(qū)居民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成圖1、圖2兩幅統(tǒng)計圖(尚不完整),請根據(jù)統(tǒng)計圖解答下列問題:

1)參加抽樣調(diào)查的居民有多少人?

2)將兩幅不完整的統(tǒng)計圖補(bǔ)充完整;

3)若居民區(qū)有8000人,請估計愛吃D粽的人數(shù).

4)若有外型完全相同的A、BC、D粽各一個,煮熟后,小韋吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式和不等式組:
(1)x為何值時,代數(shù)式 的值比 的值大1.
(2)解不等式組: ,并把解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,點D、F分別在AB、AC上,CF=CB,連接CD,CE⊥CD且CE=CD,連接EF.
(1)求證:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程(k+1)x2+2x=0有兩個不相等的實數(shù)根,則k的取值范圍為( )

A. k>-1 B. k<-1 C. k≠-1 D. k<0k≠-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司有A、B兩種客車,它們的載客量和租金如下表,星星中學(xué)根據(jù)實際情況,計劃用A、B型車共5輛,同時送七年級師生到;貐⒓由鐣䦟嵺`活動.

A

B

載客量(人/輛)

40

20

租金(元/輛)

200

150


(1)若要保證租金費用不超過980元,請問該學(xué)校有哪幾種租車方案?
(2)在(1)的條件下,若七年級師生共有150人,問哪種租車方案最省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC繞頂點C逆時針旋轉(zhuǎn)得到△A′B′C , 且點B剛好落在A′B′上,若∠A=25°,∠BCA′=45°,則∠ABA等于( 。

A.30°
B.35°
C.40°
D.45°

查看答案和解析>>

同步練習(xí)冊答案