【題目】解不等式和不等式組:
(1)x為何值時,代數(shù)式 的值比 的值大1.
(2)解不等式組: ,并把解集在數(shù)軸上表示出來.
【答案】
(1)解:根據(jù)題意,得: ﹣ =1,
∴2(x+4)﹣3(3x﹣1)=6,
2x+8﹣9x+3=6,
2x﹣9x=6﹣8﹣3,
﹣7x=﹣5,
∴x=
(2)解:解不等式①,得:x≤3,
解不等式②,得:x>﹣1,
∴不等式組的解集為﹣1<x≤3,
將解集表示在數(shù)軸上如下:
【解析】(1)根據(jù)題意列出方程,在依據(jù)解一元一次方程的基本步驟依次進行可得答案;(2)分別求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集.
【考點精析】通過靈活運用解一元一次方程的步驟和不等式的解集在數(shù)軸上的表示,掌握先去分母再括號,移項變號要記牢.同類各項去合并,系數(shù)化“1”還沒好.求得未知須檢驗,回代值等才算了;不等式的解集可以在數(shù)軸上表示,分三步進行:①畫數(shù)軸②定界點③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實心圓點,不等于用空心圓圈即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c+2的圖象如圖所示,頂點為(﹣1,0),下列結論:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正確結論的個數(shù)是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABP中,C是BP邊上一點,∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點E.
(1)求證:PA是⊙O的切線;
(2)過點C作CF⊥AD,垂足為點F,延長CF交AB于點G,若AGAB=48,求AC的長;
(3)在滿足(2)的條件下,若AF:FD=1:2,GF=2,求⊙O的半徑及sin∠ACE的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算。
(1)你發(fā)現(xiàn)了嗎?( )2= × ,( )﹣2= = × = × 由上述計算,我們發(fā)現(xiàn)( )2( )﹣2;
(2)仿照(1),請你通過計算,判斷( )3與( )﹣3之間的關系.
(3)我們可以發(fā)現(xiàn):( )﹣m( )m(ab≠0)
(4)計算:( )﹣4×( )4 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠ACB=90°,∠A=30°,DE垂直平分AC,D為垂足,交AB于E,連接CE.
(1)求∠ECB的度數(shù);
(2)若AB=10,求△BCE的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若點P在第二象限,且到兩條坐標軸的距離都是4,則點P的坐標為( )
A. (﹣4,4) B. (﹣4,﹣4) C. (4,﹣4) D. (4,4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC, ①如圖1,若P點是∠ABC和∠ACB的角平分線的交點,則∠P=90°+ ∠A;
②如圖2,若P點是∠ABC和外角∠ACE的角平分線的交點,則∠P=90°﹣∠A;
③如圖3,若P點是外角∠CBF和∠BCE的角平分線的交點,則∠P=90°﹣ ∠A.
上述說法正確的個數(shù)是( )
A.3個
B.2個
C.1個
D.0個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com