【題目】如圖所示,在平面直角坐標系中,拋物線與y軸交于點B,與x軸交于點A,C(點A在點C的左側(cè)),A(-1,0),C(4,0),連接AB,BC,點為y軸負半軸上的一點,連接AG并延長交拋物線于點E,點D為線段AE上的一個動點,過點D作y軸的平行線交拋物線于點F,與線段BC交于點N.
(1)求拋物線的表達式及直線BC的表達式;
(2)在點D運動的過程中,當FN的值最大時,在線段BC上是否存在一點H,使得FNH與ABC相似,如果存在,求出此時H點的坐標;
(3)當DF=4時,連接DC,四邊形ABCD先向上平移一定單位長度后,使點D落在x軸上,然后沿x軸向左平移n(1n4)個單位長度,用含n的表達式表示平移后的四邊形與原四邊形重疊部分的面積S(直接寫出結(jié)果).
【答案】(1)直線的解析式為,拋物線的解析式為;(2)存在,點的坐標為;(3).
【解析】
(1)將點A(-1,0),C(4,0)代入得出方程組,再解方程組求出a,b即可;根據(jù)B、C兩點坐標利用待定系數(shù)法求出直線BC的解析式即可;
(2)如圖2中,設(shè),則,構(gòu)建二次函數(shù)求出FN最大時,點F的坐標,證明是直角三角形,觀察圖象可知,只有時,,求出直線FH的解析式,利用方程組即可求出點H的坐標;
(3)根據(jù),列出方程,求出m的值,分兩種情形分別求解即可.
解:(1)把,代入
得到,
解得,
∴拋物線的解析式為,
∵,,
設(shè)直線的解析式為,
則有,
解得,
∴直線的解析式為.
(2)如圖1中,設(shè),則,
∴,
∵,
∴時,的值最大,此時,
∵,,,
∴,,,
∴,
∵,
∴,
∴,
∵,
∴,
∵,,,
∴,
∵與相似,
觀察圖象可知,只有時, ,
設(shè)直線的解析式為,
把代入得,
∴直線的解析式為,
由,解得,
∴點的坐標為.
(3)∵,,
∴直線的解析式為,,
∵,
∴,
解得或3.
①當時,如圖2中,時,重疊部分是四邊形,
;
如圖3中,時,重疊部分是,
.
②當時,如圖4中,時,重疊部分是矩形.
.
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)的圖像與反比例函數(shù)的圖像交于點,與軸交于點,若,且.
(1)求反比例函數(shù)與一次函數(shù)的表達式;
(2)若點為軸上一點,是等腰三角形,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】墊球是排球隊常規(guī)訓(xùn)練的重要項目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測試的成績.測試規(guī)則為每次連續(xù)接球10個,每墊球到位1個記1分.
運動員丙測試成績統(tǒng)計表
測試序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績(分) | 7 | 6 | 8 | 7 | 5 | 8 | 8 | 7 |
運動員丙測試成績的平均數(shù)和眾數(shù)都是7,
(1)成績表中的__________,_________;
(2)若在他們?nèi)酥羞x擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認為選誰更合適?請用你所學過的統(tǒng)計量加以分析說明(參考數(shù)據(jù):三人成績的方差分別為、、)
(3)甲、乙、丙三人相互之間進行墊球練習,每個人的球都等可能的傳給其他兩人,球從乙手中傳出,球傳一次甲得到球的概率是____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】廣州中學在“讀書日”期間購進一批圖書, 需要用大小兩種規(guī)格的紙箱來裝運.個大紙箱和個小紙箱一次可以裝,本書個大紙箱和個小紙箱--次可以裝本書.
(1)一個大紙箱和一個小紙箱分別可以裝多少本書?
(2)如果一共購入本書,每個紙箱恰好裝滿,分別需要用多少個大、小紙箱?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習俗,我市某食品廠為了解市民對去年銷量較好的肉餡粽(咸)、豆沙餡粽(甜)、紅棗餡粽(甜)、蛋黃餡粽(咸)(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).
請根據(jù)以上信息回答:
(1)本次參加抽樣調(diào)查的市民有多少人?
(2)將兩幅不完整的圖補充完整;
(3)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個,用列表或畫樹狀圖的方法,求他吃到的兩個粽子都是甜味的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,直線與x軸,y軸分別交于點A,B,點在第一象限內(nèi),連結(jié),,.動點P在上從點A向終點B勻速運動,同時,動點Q在上從點C向終點O勻速運動,它們同時到達終點,連結(jié)交于點D.
(1)求點B的坐標和a的值;
(2)當點Q運動到中點時,連結(jié),求的面積;
(3)作交直線于點R.
①當為等腰三角形時,求的長度;
②記交于點E,連結(jié),則的最小值為__________.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,拋物線y=ax2+bx+3與x軸交于點A(3,0),B(﹣1,0),與y軸交于點C,連接AC,點P是直線AC上方的拋物線上一動點(異于點A,C),過點P作PE⊥x軸,垂足為E,PE與AC相交于點D,連接AP.
(1)求點C的坐標;
(2)求拋物線的解析式;
(3)①求直線AC的解析式;
②是否存在點P,使得△PAD的面積等于△DAE的面積,若存在,求出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于,兩點,與軸相交于點,連接,且的面積為2.
(1)求反比例函數(shù)的表達式;
(2)將直線向下平移,若平移后的直線與反比例函數(shù)的圖象只有一個交點,試說明直線向下平移了幾個單位長度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某縣建檔立卡貧困戶對精準扶貧政策落實的滿意度,現(xiàn)從全縣建檔立卡貧困戶中隨機抽取了部分貧困戶進行了調(diào)查(把調(diào)查結(jié)果分為四個等級:A級:非常滿意;B級:滿意;C級:基本滿意;D級:不滿意),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解決下列問題:
(1)本次抽樣調(diào)查測試的建檔立卡貧困戶的總戶數(shù)______.
(2)圖1中,∠α的度數(shù)是______,并把圖2條形統(tǒng)計圖補充完整.
(3)某縣建檔立卡貧困戶有10000戶,如果全部參加這次滿意度調(diào)查,請估計非常滿意的人數(shù)約為多少戶?
(4)調(diào)查人員想從5戶建檔立卡貧困戶(分別記為)中隨機選取兩戶,調(diào)查他們對精準扶貧政策落實的滿意度,請用列表或畫樹狀圖的方法求出選中貧困戶的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com