【題目】如圖,已知正方形OABC的邊長為2,頂點(diǎn)A,C分別在x軸,y軸的正半軸上,點(diǎn)E是BC的中點(diǎn),F(xiàn)是AB延長線上一點(diǎn)且FB=1.
(1)求經(jīng)過點(diǎn)O,A,E三點(diǎn)的拋物線解析式;
(2)點(diǎn)P在拋物線上運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí)△OAP的面積為2,請求出點(diǎn)P的坐標(biāo);
(3)在拋物線上是否存在一點(diǎn)Q,使△AFQ是等腰直角三角形?若存在直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
【答案】(1)y=-2x2+4x(2)(1,2),(1+,-2)或(1-,-2)(3)拋物線上存在點(diǎn)Q(, )使△AFQ是等腰直角三角形
【解析】試題分析:(1)根據(jù)點(diǎn)A、點(diǎn)E的坐標(biāo),設(shè)出二次函數(shù)的解析式,待定系數(shù)即可;
(2)判斷出面積為2時(shí)的點(diǎn)的縱坐標(biāo),代入函數(shù)可求P點(diǎn)的坐標(biāo);
(3)根據(jù)題意,分三種情況討論解答.
試題解析:(1)點(diǎn)A的坐標(biāo)是(2,0),點(diǎn)E的坐標(biāo)是(1,2).
設(shè)拋物線的解析式是y=ax2+bx+c,根據(jù)題意,得
解得
∴拋物線的解析式是y=-2x2+4x.
(2)當(dāng)△OAP的面積是2時(shí),點(diǎn)P的縱坐標(biāo)是2或-2.
當(dāng)-2x2+4x=2時(shí),解得x=1,
∴點(diǎn)P的坐標(biāo)是(1,2);
當(dāng)-2x2+4x=-2時(shí),解得x=1±,
此時(shí)點(diǎn)P的坐標(biāo)是(1+,-2)或(1-,-2).
綜上,點(diǎn)P的坐標(biāo)為(1,2),(1+,-2)或(1-,-2).
(3)∵AF=AB+BF=2+1=3,OA=2.
則點(diǎn)A是直角頂點(diǎn)時(shí),Q不可能在拋物線上;
當(dāng)點(diǎn)F是直角頂點(diǎn)時(shí),Q不可能在拋物線上;
當(dāng)點(diǎn)Q是直角頂點(diǎn)時(shí),Q到AF的距離是AF=,若點(diǎn)Q存在,則Q的坐標(biāo)是(, ).將Q(, )代入拋物線解析式成立.
∴拋物線上存在點(diǎn)Q(, )使△AFQ是等腰直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線L上有三個(gè)正方形a,b,c,若a,c的面積分別為1和9,則b的面積為( )
A.8 B.9 C.10 D.11
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在讀書月活動(dòng)中,學(xué)校準(zhǔn)備購買一批課外讀物.為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個(gè)類別進(jìn)行了抽樣調(diào)查(每位同學(xué)只選一類),如圖是根
據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖.
請你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)本次調(diào)查中,一共調(diào)查了 名同學(xué);
(2)條形統(tǒng)計(jì)圖中,m= ,n= ;
(3)扇形統(tǒng)計(jì)圖中,藝術(shù)類讀物所在扇形的圓心角是 度;
(4)學(xué)校計(jì)劃購買課外讀物6000冊,請根據(jù)樣本數(shù)據(jù),估計(jì)學(xué)校購買其他類讀物多少冊比較合理?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A、B、C是數(shù)軸上三點(diǎn),O為原點(diǎn),點(diǎn)A表示的數(shù)為-12,點(diǎn)B表示的數(shù)為8,點(diǎn)C為線段AB的中點(diǎn).
(1)數(shù)軸上點(diǎn)C表示的數(shù)是 ;
(2)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),當(dāng)P、Q相遇時(shí),兩點(diǎn)都停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
①當(dāng)t為何值時(shí),點(diǎn)O恰好是PQ的中點(diǎn);
②當(dāng)t為何值時(shí),點(diǎn)P、Q、C三個(gè)點(diǎn)中恰好有一個(gè)點(diǎn)是以另外兩個(gè)點(diǎn)為端點(diǎn)的線段的三等分點(diǎn)(三等分點(diǎn)是把一條線段平均分成三等分的點(diǎn)).(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD的兩條邊在坐標(biāo)軸上,點(diǎn)D與坐標(biāo)原點(diǎn)O重合,且AD=8,AB=6.如圖2,矩形ABCD沿OB方向以每秒1個(gè)單位長度的速度運(yùn)動(dòng),同時(shí)點(diǎn)P從A點(diǎn)出發(fā)也以每秒1個(gè)單位長度的速度沿矩形ABCD的邊AB經(jīng)過點(diǎn)B向點(diǎn)C運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),矩形ABCD和點(diǎn)P同時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=5時(shí),請直接寫出點(diǎn)D、點(diǎn)P的坐標(biāo);
(2)當(dāng)點(diǎn)P在線段AB或線段BC上運(yùn)動(dòng)時(shí),求出△PBD的面積S關(guān)于t的函數(shù)關(guān)系式,并寫出相應(yīng)t的取值范圍;
(3)點(diǎn)P在線段AB或線段BC上運(yùn)動(dòng)時(shí),作PE⊥x軸,垂足為點(diǎn)E,當(dāng)△PEO與△BCD相似時(shí),求出相應(yīng)的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)戶種植一種經(jīng)濟(jì)作物,總用水量y(米3)與種植時(shí)間x(天)之間的函數(shù)關(guān)系式如圖所示.
(1)第20天的總用水量為多少米3?
(2)當(dāng)x≥20時(shí),求y與x之間的函數(shù)關(guān)系式;
(3)種植時(shí)間為多少天時(shí),總用水量達(dá)到7000米3?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知與填空:如圖①,直線,求證:.
閱讀下面的解答過程,并填上適當(dāng)?shù)睦碛桑?/span>
解:過點(diǎn)作直線,
( )
(已知),,
( )
( )
,
( )
應(yīng)用與拓展:如圖②,直線,若.
則 度
方法與實(shí)踐:如圖③,直線,若,則 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的個(gè)數(shù)是( )
①兩點(diǎn)之間,直線最短.
②三條直線兩兩相交,最少有三個(gè)交點(diǎn).
③射線和射線是同一條射線.
④同角(或等角)的補(bǔ)角相等.
⑤在同一平面內(nèi),垂直于同一條直線的兩條直線互相平行.
⑥絕對值等于它本身的數(shù)是非負(fù)數(shù).
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com