【題目】(8分)如圖,⊙O的內(nèi)接四邊形ABCD兩組對(duì)邊的延長(zhǎng)線分別交于點(diǎn)E、F.
(1)若∠E=∠F時(shí),求證:∠ADC=∠ABC;
(2)若∠E=∠F=42°時(shí),求∠A的度數(shù);
(3)若∠E=α,∠F=β,且α≠β.請(qǐng)你用含有α、β的代數(shù)式表示∠A的大小.
【答案】(1)見(jiàn)解析;(2)48°;(3)∠A=90°﹣.
【解析】
試題(1)根據(jù)外角的性質(zhì)即可得到結(jié)論;
(2)根據(jù)圓內(nèi)接四邊形的性質(zhì)和等量代換即可求得結(jié)果;
(3)連結(jié)EF,如圖,根據(jù)圓內(nèi)接四邊形的性質(zhì)得∠ECD=∠A,再根據(jù)三角形外角性質(zhì)得∠ECD=∠1+∠2,則∠A=∠1+∠2,然后根據(jù)三角形內(nèi)角和定理有∠A+∠1+∠2+∠E+∠F=180°,即2∠A+α+β=180°,再解方程即可.
試題解析:解:(1)∠E=∠F,
∵∠DCE=∠BCF,
∴∠ADC=∠E+∠DCE,∠ABC=∠F+∠BCF,
∴∠ADC=∠ABC;
(2)由(1)知∠ADC=∠ABC,
∵∠EDC=∠ABC,
∴∠EDC=∠ADC,
∴∠ADC=90°,
∴∠A=90°﹣42°=48°;
(3)連結(jié)EF,如圖,
∵四邊形ABCD為圓的內(nèi)接四邊形,
∴∠ECD=∠A,
∵∠ECD=∠1+∠2,
∴∠A=∠1+∠2,
∵∠A+∠1+∠2+∠E+∠F=180°,
∴2∠A+α+β=180°,
∴∠A=90°﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,M是△ABC的邊BC的中點(diǎn),AN平分∠BAC,BN⊥AN于點(diǎn)N,延長(zhǎng)BN交AC于點(diǎn)D,已知AB=10,BC=15,MN=3
(1)求證:BN=DN;
(2)求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象所示,對(duì)稱軸為x=1,給出下列結(jié)論:①abc>0;②當(dāng)x>2時(shí),y>0;③3a+c>0;④3a+b>0.其中正確的結(jié)論有( )
A. ①② B. ①④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近期豬肉價(jià)格不斷走高,引起了民眾與政府的高度關(guān)注.當(dāng)市場(chǎng)豬肉的平均價(jià)格每千克達(dá)到一定的單價(jià)時(shí),政府將投入儲(chǔ)備豬肉以平抑豬肉價(jià)格.
從今年年初至月日,豬肉價(jià)格不斷走高,月日比年初價(jià)格上漲了.某市民在今年月日購(gòu)買(mǎi)千克豬肉至少要花元錢(qián),那么今年年初豬肉的最低價(jià)格為每千克多少元?
(2)月日,豬肉價(jià)格為每千克元月日,某市決定投入儲(chǔ)備豬肉并規(guī)定其銷(xiāo)售價(jià)在每千克元的基礎(chǔ)上下調(diào)出售.某超市按規(guī)定價(jià)出售一批儲(chǔ)備豬肉,該超市在非儲(chǔ)備豬肉的價(jià)格仍為每千克元的情況下,該天的兩種豬肉總銷(xiāo)量比月日增加了,且儲(chǔ)備豬肉的銷(xiāo)量占總銷(xiāo)量的,兩種豬肉銷(xiāo)售的總金額比月日提高了,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知、分別為的直徑和弦,為 的中點(diǎn),垂直于的延長(zhǎng)線于,連接,若,,下列結(jié)論一定錯(cuò)誤的是( )
A. DE是⊙O的切線 B. 直徑AB長(zhǎng)為20cm
C. 弦AC長(zhǎng)為16cm D. C為 的中點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明騎自行車(chē)從甲地到乙地,圖中的折線表示小明行駛的路程與所用時(shí)間之間的函數(shù)關(guān)系.試根據(jù)函數(shù)圖像解答下列問(wèn)題:
(1)小明在途中停留了____,小明在停留之前的速度為____;
(2)求線段的函數(shù)表達(dá)式;
(3)小明出發(fā)1小時(shí)后,小華也從甲地沿相同路徑勻速向乙地騎行,時(shí),兩人同時(shí)到達(dá)乙地,求為何值時(shí),兩人在途中相遇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)結(jié)論,其中正確的結(jié)論為( )
A. 等邊三角形既是軸對(duì)稱圖形,又是中心對(duì)稱圖形
B. 對(duì)角線相等的四邊形是矩形
C. 三角形的外心到三個(gè)頂點(diǎn)的距離相等
D. 任意三個(gè)點(diǎn)都可確定一個(gè)圓
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線經(jīng)過(guò)正方形的頂點(diǎn),先分別過(guò)此正方形的頂點(diǎn)、作于點(diǎn)、于點(diǎn).然后再以正方形對(duì)角線的交點(diǎn)為端點(diǎn),引兩條相互垂直的射線分別與,交于,兩點(diǎn).若,,則線段長(zhǎng)度的最小值是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知、兩地之間有一條270千米的公路,甲、乙兩車(chē)同時(shí)出發(fā),甲車(chē)以60千米/時(shí)的速度沿此公路從地勻速開(kāi)往地,乙車(chē)從地沿此公路勻速開(kāi)往地,兩車(chē)分別到達(dá)目的地后停止.甲、乙兩車(chē)相距的路程(千米)與甲車(chē)的行駛時(shí)間(時(shí))之間的函數(shù)關(guān)系如圖所示.
(1)乙車(chē)的速度為 千米/時(shí), , .
(2)求甲、乙兩車(chē)相遇后與之間的函數(shù)關(guān)系式.
(3)當(dāng)甲車(chē)到達(dá)距地70千米處時(shí),求甲、乙兩車(chē)之間的路程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com