【題目】如圖,頂點為的拋物線與軸交于,兩點,與軸交于點,過點作軸交拋物線于另一點,作軸,垂足為點.雙曲線經過點,連接,.
(1)求拋物線的表達式;
(2)點,分別是軸,軸上的兩點,當以,,,為頂點的四邊形周長最小時,求出點,的坐標;
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以點(3,-5)為圓心,r為半徑的圓上有且僅有兩點到x軸所在直線的距離等于1,則圓的半徑r的取值范圍是 ( )
A.r>4 B.0<r<6 C.4≤r<6 D.4<r<6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+2x+c與x軸交于A(﹣1,0)B(3,0)兩點,與y軸交于點C.
(1)求拋物線y=ax2+2x+c的解析式:;
(2)點D為拋物線上對稱軸右側、x軸上方一點,DE⊥x軸于點E,DF∥AC交拋物線對稱軸于點F,求DE+DF的最大值;
(3)①在拋物線上是否存在點P,使以點A,P,C為頂點,AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由;
②點Q在拋物線對稱軸上,其縱坐標為t,請直接寫出△ACQ為銳角三角形時t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,點E是AD的中點,連接BE,過點A作BC的平行線交BE的延長線于點F,連接CF.
(1)求證:AF=DC;
(2)在不添加任何輔助線的情況下,請直接寫出圖中四個三角形,使寫出的每個三角形的面積等于△AEF面積的2倍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=-x2+1,下列結論:
①拋物線開口向上;
②拋物線與x軸交于點(-1,0)和點(1,0);
③拋物線的對稱軸是y軸;
④拋物線的頂點坐標是(0,1);
⑤拋物線y=-x2+1是由拋物線y=-x2向上平移1個單位得到的.
其中正確的個數(shù)有( )
A. 5個B. 4個C. 3個
D. 2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】十八大以來,某校已舉辦五屆校園藝術節(jié).為了弘揚中華優(yōu)秀傳統(tǒng)文化,每屆藝術節(jié)上都有一些班級表演“經典誦讀”、“民樂演奏”、“歌曲聯(lián)唱”、“民族舞蹈”等節(jié)目.小穎對每屆藝術節(jié)表演這些節(jié)目的班級數(shù)進行統(tǒng)計,并繪制了如圖所示不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖.
(1)五屆藝術節(jié)共有________個班級表演這些節(jié)日,班數(shù)的中位數(shù)為________,在扇形統(tǒng)計圖中,第四屆班級數(shù)的扇形圓心角的度數(shù)為________;
(2)補全折線統(tǒng)計圖;
(3)第六屆藝術節(jié),某班決定從這四項藝術形式中任選兩項表演(“經典誦讀”、“民樂演奏”、“歌曲聯(lián)唱”、“民族舞蹈”分別用,,,表示).利用樹狀圖或表格求出該班選擇和兩項的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有10個人圍成一個圓圈做游戲.游戲的規(guī)則是:每個人心里都想好一個數(shù),并把自己想好的數(shù)如實地告訴他兩旁的兩個人,然后每個人將他兩旁的兩個人告訴他的數(shù)的平均數(shù)報出來.若報出來的數(shù)如圖所示,則報3的人心里想的數(shù)是____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C,D兩點.點P是x軸上的一個動點.
(1)求此拋物線的解析式;
(2)當PA+PB的值最小時,求點P的坐標;
(3)拋物線上是否存在一點Q(Q與B不重合),使△CDQ的面積等于△BCD的面積?若存在,直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,等腰梯形OABC的底邊OC在x軸上,AB∥OC,O為坐標原點,OA = AB =BC,∠AOC=60°,連接OB,點P為線段OB上一個動點,點E為邊OC中點.
(1)連接PA.PE,求證:PA=PE;
(2)連接PC,若PC+PE=2,試求AB的最大值;
(3)在(2)在條件下,當AB取最大值時,如圖2,點M坐標為(0,-1),點D為線段OC上一個動點,當D點從O點向C點移動時,直線MD與梯形另一邊交點為N,設D點橫坐標為m,當△MNC為鈍角三角形時,求m的范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com