【題目】如圖,AB是O的直徑,AB=4,C為的三等分點(更靠近A點),點P是O上一個動點,取弦AP的中點D,則線段CD的最大值為( )
A.2B.C.D.
【答案】D
【解析】
取OA的中點Q,連接DQ,OD,CQ,根據(jù)條件可求得CQ長,再由垂徑定理得出OD⊥AP,由直角三角形斜邊中線等于斜邊一半求得QD長,根據(jù)當C,Q,D三點共線時,CD長最大求解.
解:如圖,取AO的中點Q,連接CQ,QD,OD,
∵C為的三等分點,
∴的度數(shù)為60°,
∴∠AOC=60°,
∵OA=OC,
∴△AOC為等邊三角形,
∵Q為OA的中點,
∴CQ⊥OA,∠OCQ=30°,
∴OQ= ,
由勾股定理可得,CQ= ,
∵D為AP的中點,
∴OD⊥AP,
∵Q為OA的中點,
∴DQ= ,
∴當D點CQ的延長線上時,即點C,Q,D三點共線時,CD長最大,最大值為 .
故選D
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為某景區(qū)五個景點A,B,C,D,E的平面示意圖,B,A在C的正東方向,D在C的正北方向,D,E在B的北偏西30°方向上,E在A的西北方向上,C,D相距1000m,E在BD的中點處.
(1)求景點B,E之間的距離;
(2)求景點B,A之間的距離.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜加工公司先后兩批次收購洋蔥共100噸.第一批洋蔥價格為4000元/噸;因洋蔥大量上市,第二批價格跌至1000元/噸.這兩批洋蔥共用去16萬元.
(1)求兩批次購進洋蔥各多少噸;
(2)公司收購后對洋蔥進行加工,分為粗加工和精加工兩種:粗加工每噸利潤400元,精加工每噸利潤1000元.要求精加工數(shù)量不多于粗加工數(shù)量的三倍.為獲得最大利潤,精加工數(shù)量應(yīng)為多少噸?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形ABCD的頂點A點,D點分別在x軸、y軸上,對角線BD∥x軸,反比例函數(shù)的圖象經(jīng)過矩形對角線的交點E,若點A(2,0),D(0,4),則k的值為( )
A.16B.20C.32D.40
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點M是邊BC上的一點(不與B、C重合),點N在CD邊的延長線上,且滿足∠MAN=90°,聯(lián)結(jié)MN、AC,MN與邊AD交于點E.
(1)求證:AM=AN;
(2)如果∠CAD=2∠NAD,求證:AM2=ACAE;
(3)MN和AC相交于O點,若BM=1,AB=3,試猜想線段OM,ON的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線x=t(t>0)與雙曲線y=(k1>0)交于點A,與雙曲線y=(k2<0)交于點B,連接OA,OB.
(1)當k1、k2分別為某一確定值時,隨t值的增大,△AOB的面積_______(填增大、不變、或減小)
(2)當k1+k2=0,S△AOB=8時,求k1、k2的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com