分析 根據(jù)勾股定理的逆定理求出∠A=90°,根據(jù)矩形的判定得出四邊形ADME是矩形,根據(jù)矩形的性質(zhì)得出DE=AM,求出AM的最小值即可.
解答 解:∵在△ABC中,AB=6cm,AC=8cm,BC=10cm,
∴BC2=AB2+AC2,
∴∠A=90°,
∵M(jìn)D⊥AB,ME⊥AC,
∴∠A=∠ADM=∠AEM=90°,
∴四邊形ADME是矩形,
∴DE=AM,
當(dāng)AM⊥BC時(shí),AM的長(zhǎng)最短,
根據(jù)三角形的面積公式得:$\frac{1}{2}$AB×AC=$\frac{1}{2}$BC×AM,
∴6×8=10AM,
AM=4.8(cm),
即DE的最小值是4.8cm.
故答案為:4.8.
點(diǎn)評(píng) 本題考查了矩形的性質(zhì)和判定,勾股定理的逆定理,三角形的面積,垂線段最短的應(yīng)用,能求出AM=DE是解此題的關(guān)鍵,注意:垂線段最短.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com