【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點,將三角形進(jìn)行平移,平移后點的對應(yīng)點分別是點,點,點,點,點.

1)若,求的值;

2)若點,其中. 直線軸于點,且三角形的面積為1,試探究的數(shù)量關(guān)系,并說明理由.

【答案】1的值為6;(2.理由詳見解析.

【解析】

1)當(dāng)a=1時,得出A、BD、E四點的坐標(biāo),再根據(jù)平移的規(guī)律得到,即可求出m的值;
2)由平移的規(guī)律得出,變形整理得到,那么CEx軸,根據(jù)三角形BEM的面積,求出a=2,A0,2),B0,6),C-2,5).根據(jù)點F與點C是對應(yīng)點,得出F0,4),求出AF=BF=2

解:(1)當(dāng)時,

由三角形平移得到三角形,

的對應(yīng)點分別為

,

可得,

解得.

的值為6.

2)由三角形平移得到三角形,

,的對應(yīng)點分別為

.

可得,

由②得③,

把③代入①,得,

∴點與點的縱坐標(biāo)相等,

軸,

∴點

∴三角形的面積,

,

,.

,

,.

又∵在平移中,點與點是對應(yīng)點,

,

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究:如圖①,在中,點,分別是邊,,上,且,,若,求的度數(shù).請把下面的解答過程補充完整.(請在空上填寫推理依據(jù)或數(shù)學(xué)式子)

解:∵

_____________________________

___________________________________

______________________________

_____________

應(yīng)用:如圖②,在中,點,分別是邊,的延長線上,且,,若,則的大小為_____________(用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題:如圖,在平面直角坐標(biāo)系中,ABC的三個頂點坐標(biāo)分別為A(﹣2,1),B(﹣1,4),C(﹣3,2).

(1)畫出ABC關(guān)于y軸對稱的圖形A1B1C1,并直接寫出C1點坐標(biāo);

(2)以原點O為位似中心,位似比為1:2,在y軸的左側(cè),畫出ABC放大后的圖形A2B2C2,并直接寫出C2點坐標(biāo);

(3)如果點D(a,b)在線段AB上,請直接寫出經(jīng)過(2)的變化后D的對應(yīng)點D2的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點.P1次向右平移1個單位長度,向下平移2個單位長度至點,接著,第2次向右平移1個單位長度,向上平移3個單位長度至點,第3次向右平移1個單位長度,向下平移4個單位長度至點,第4次向右平移1個單位長度,向上平移5個單位至點,…,按照此規(guī)律,點2019次平移至點的坐標(biāo)是

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=11,∠BAC=120°,AD△ABC的中線,AE∠BAD的角平分線,DF∥ABAE的延長線于點F,則DF的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點,都在雙曲線()上,分別是軸,軸上的動點,當(dāng)四邊形PABQ的周長取最小值時,PQ所在直線的表達(dá)式為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線,

1)如圖1,點在直線上的左側(cè),直接寫出,之間的數(shù)量關(guān)系是   

2)如圖2,點在直線的左側(cè),,分別平分,,直接寫出的數(shù)量關(guān)系是   

3)如圖3,點在直線的右側(cè)仍平分,,那么有怎樣的數(shù)量關(guān)系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:將邊長為的正三角形的三條邊分別等分,連接各邊對應(yīng)的等分點,則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個?

探究:要研究上面的問題,我們不妨先從最簡單的情形入手,進(jìn)而找到一般性規(guī)律.

探究一:將邊長為2的正三角形的三條邊分別二等分,連接各邊中點,則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個?

如圖①,連接邊長為2的正三角形三條邊的中點,從上往下看:

邊長為1的正三角形,第一層有1個,第二層有3個,共有個;

邊長為2的正三角形一共有1個.

探究二:將邊長為3的正三角形的三條邊分別三等分,連接各邊對應(yīng)的等分點,則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個?

如圖②,連接邊長為3的正三角形三條邊的對應(yīng)三等分點,從上往下看:邊長為1的正三角形,第一層有1個,第二層有3個,第三層有5個,共有個;邊長為2的正三角形共有個.

探究三:將邊長為4的正三角形的三條邊分別四等分(圖③),連接各邊對應(yīng)的等分點,則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個?

(仿照上述方法,寫出探究過程)

結(jié)論:將邊長為的正三角形的三條邊分別等分,連接各邊對應(yīng)的等分點,則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個?

(仿照上述方法,寫出探究過程)

應(yīng)用:將一個邊長為25的正三角形的三條邊分別25等分,連接各邊對應(yīng)的等分點,則該三角形中邊長為1的正三角形有______個和邊長為2的正三角形有______個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,AC是弦,半徑OD⊥AC于點E,過點D的切線與BA延長線交于點F.

(1)求證:∠CDB=∠BFD;

(2)若AB=10,AC=8,求DF的長.

查看答案和解析>>

同步練習(xí)冊答案